SECTION TABLE OF CONTENTS

DIVISION 09 - FINISHES

SECTION 09 97 13.26

COATING OF STEEL WATERFRONT STRUCTURES

04/06

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 ENVIRONMENTAL CONDITIONS
1.4 SAFETY AND HEALTH PRECAUTIONS

PART 2 PRODUCTS

2.1 COATING SYSTEMS
 2.1.1 Coating
 2.1.1.1 Epoxy-Polyamide
 2.1.1.2 Coal Tar Epoxy-Polyamide

PART 3 EXECUTION

3.1 CLEANING AND PREPARATION OF SURFACES
 3.1.1 Solvent Cleaning
 3.1.2 Blast Cleaning
 3.2 PROPORTIONING AND MIXING OF COATING SYSTEM
 3.2.1 Proportioning of Epoxy-Polyamide System
 3.2.2 Proportioning of Coal Tar Epoxy-Polyamide System
 3.2.3 Mixing of Epoxy-Polyamide System
 3.2.4 Mixing of Coal Tar Epoxy-Polyamide System

3.3 COATING APPLICATION
 3.3.1 General
 3.3.1.1 Application Method for Epoxy-Polyamide System
 3.3.1.2 Application Method for Coal Tar Epoxy-Polyamide System
 3.3.2 Repair of Defects
 3.3.3 Three-Coat Epoxy-Polyamide System
 3.3.4 Two-Coat Coal Tar Epoxy-Polyamide System
 3.3.5 Dry Film Thickness

3.4 SURFACES TO BE COATED
 3.4.1 Steel Waterfront Construction

3.5 FIELD TESTS
 3.5.1 Holiday Testing

SECTION 09 97 13.26 Page 1
3.5.2 Dry Film Thickness

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for coating steel-sheet piling and other steel waterfront structures.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: Also consider using cathodic protection in addition to coating. See UFC 3-570-02N, "Electrical Engineering Cathodic Protection" and UFC 3-570-06, "O&M: Cathodic Protection Systems".

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.
Use the Reference Wizard’s Check Reference feature when you add a RID outside of the Section’s Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard’s Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E376 (2011) Measuring Coating Thickness by Magnetic-Field or Eddy-Current (Electromagnetic) Test Methods

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC PS 11.01 (1982; E 2004) Black (or Dark Red) Coal Tar Epoxy Polyamide Painting System

SSPC PS 13.01 (1982; E 2004) Epoxy Polyamide Painting System

SSPC Paint 16 (2006) Coal Tar Epoxy-Polyamide Black (or Dark Red) Paint

SSPC SP 1 (1982; E 2004) Solvent Cleaning

SSPC SP 10/NACE No. 2 (2007) Near-White Blast Cleaning

1.2 SUBMITTALS

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government
approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-07 Certificates

[Epoxy-polyamide]

[Coal tar epoxy-polyamide]

1.3 ENVIRONMENTAL CONDITIONS

NOTE: If induction can occur in a warm area (above 21 degrees C 70 degrees F), then epoxy-polyamide can be applied at a job site having an ambient temperature as low as 4 degrees C 40 degrees F. Coal tar epoxy-polyamide should be applied when the ambient temperature is above 10 degrees C 50 degrees F.

Start work only when ambient and curing temperatures are within limits of
coating manufacturer's recommendations and at least 3 degrees C 5 degrees F above dew point temperature.

1.4 SAFETY AND HEALTH PRECAUTIONS

Materials listed in this section contain coal tar pitch volatiles, which are toxic. Follow safety procedures as recommended by manufacturer. Work in a well ventilated area. Provide, and require workers to use, impervious clothing, gloves, face shields (200 mm 8 inch minimum), and other appropriate protective clothing necessary to prevent eye and skin contact with coating materials. Keep coatings away from heat, sparks and flame.

PART 2 PRODUCTS

2.1 COATING SYSTEMS

2.1.1 Coating

**

NOTE: Advantages of epoxy-polyamide are that it can be applied at lower temperatures under certain conditions and that the three-coat application lessens the possibility of pinholes. Disadvantage is that it has a longer induction time than coal tar epoxy-polyamide.

Advantages of coal tar epoxy-polyamide are that two-coats will result in 0.40 mm 16 mils thickness, it has better water resistance, and is self-priming. Disadvantages are that it gets brittle on prolonged sunlight exposure, is more hazardous to health and it comes only in black or dark red color. It is important to check local air pollution control district regulations before selecting the coating. Regulations are constantly changing, particularly regarding volatile organic compounds (VOC) limits.

**

Provide catalyst component[s] for coating[s] specific for resin component[s]. Use thinners which are compatible with the coating.

**

NOTE: Choose either "Epoxy-Polyamide" or "Coal Tar Epoxy-Polyamide."

**

2.1.1.1 [Epoxy-Polyamide

a. System: SSPC PS 13.01
b. Paints: SSPC Paint 22, Primer, Intermediate and Top Coats

] 2.1.1.2 [Coal Tar Epoxy-Polyamide

a. System: SSPC PS 11.01
b. Paints: SSPC Paint 16 [Black] [Dark Red]
PART 3 EXECUTION

3.1 CLEANING AND PREPARATION OF SURFACES

3.1.1 Solvent Cleaning

**
NOTE: SSPC SP 1, "Solvent Cleaning" covers cleaning using simple solvents, solvent wiping, immersion in solvent, solvent spray, vapor degreasing, steam cleaning with and without detergent, emulsion cleaning, chemical paint stripping, and alkaline cleaners. If local air pollution control districts restrict use of any of these systems, specify which one is to be used.
**

SSPC SP 1. Remove visible oil, grease, and drawing and cutting compounds by solvent cleaning.

3.1.2 Blast Cleaning

**
NOTE: Blasting alone will not remove oil or grease. Use 0.0375 mm 1 1/2 mil thickness with epoxy-polyamide system. Use 0.0625 mm 2 1/2 mil thickness with coal tar epoxy.
**

SSPC SP 10/NACE No. 2. After solvent cleaning, complete surface preparation by near-white blast cleaning. Remove residual dust from blasted surface by blowing with dry, oil-free air, vacuuming, or sweeping. Provide surface profile of at least [0.0375] [0.0625] mm [1 1/2] [2 1/2]-mil thickness.

3.2 PROPORTIONING AND MIXING OF COATING SYSTEM

3.2.1 [Proportioning of Epoxy-Polyamide System

**
NOTE: Choose this paragraph or the paragraph below entitled "Proportioning of Coal Tar Epoxy-Polyamide System."
**

Epoxy-polyamide coatings consist of a two-component system that includes a pigmented polyamide resin, Component A and an epoxy resin, Component B. Mix both components in a ratio of 1 to 1 by volume. Do not thin coatings when doing so will result in total volatile organic compounds exceeding limits enacted by local air pollution control district. When thinning is allowed and is necessary, such as during cold temperature application or to improve application characteristics, add up to 0.5 liter one pint of ethylene glycol monoethyl (EGM) ether for each 4 liters gallon of the coating.

3.2.2 [Proportioning of Coal Tar Epoxy-Polyamide System

Coal tar epoxy-polyamide consists of a two-component system. Component A contains a refined coal tar pitch, polyamide resin, and a polyamine
promoter to accelerate curing rate. Component B is an epoxy resin. Mix both components in a ratio of 4 parts of Component A to 1 part of Component B by volume. Do not thin coatings when doing so will result in total volatile organic compounds exceeding limits enacted by local air pollution control districts. When thinning is allowed and is necessary for proper application, use xylene or the coating manufacturer's recommended thinner, to a maximum of one liter to a 10 liter 1/2 gallon to a 5-gallon batch.

3.2.3 [Mixing of Epoxy-Polyamide System]

**
NOTE: Choose this paragraph or the paragraph below
entitled "Mixing of Coal Tar Epoxy-Polyamide System."
**

Mix components of coating by power stirring until a smooth, uniform consistency results. Stir coating periodically during its induction period. Follow Table 1 for induction time and pot life of mixed batches.

<table>
<thead>
<tr>
<th>Ambient Temperature Degrees C</th>
<th>Induction Time (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 to 10.0</td>
<td>2 at 21.1 degrees C</td>
</tr>
<tr>
<td>10.0 to 15.6</td>
<td>2</td>
</tr>
<tr>
<td>15.6 to 21.1</td>
<td>1 to 1-1/2</td>
</tr>
<tr>
<td>21.1 and above</td>
<td>1/2 to 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient Temperature Degrees F</th>
<th>Induction Time (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 to 50</td>
<td>2 at 70 degrees F</td>
</tr>
<tr>
<td>50 to 60</td>
<td>2</td>
</tr>
<tr>
<td>60 to 70</td>
<td>1 to 1-1/2</td>
</tr>
<tr>
<td>70 and above</td>
<td>1/2 to 1</td>
</tr>
</tbody>
</table>

3.2.4 [Mixing of Coal Tar Epoxy-Polyamide System]

Power stir components to a smooth, uniform consistency. Stir coating periodically during induction period. Follow coating manufacturer's requirements for induction time and pot life of mixed batches.
3.3 COATING APPLICATION

3.3.1 General

Apply primer coating to dry surfaces not more than 4 hours after near-white blast cleaning. Apply coats of each system so that finished surfaces are free from runs, sags, brush marks and variations in color.

3.3.1.1 [Application Method for Epoxy-Polyamide System]

**
NOTE: Choose this paragraph or the paragraph below entitled "Application Method for Coal Tar Epoxy-Polyamide System."
**

Allow previous coat to dry to tack-free condition but not more than 72 hours before applying next coat. If more than 72 hours elapses between coats, clean surface, apply a 0.05 mm 2 mil wet film thickness of previous coat, allow to cure to a tacky film, and apply a full thickness of next coat.

3.3.1.2 [Application Method for Coal Tar Epoxy-Polyamide System]

Unless otherwise specified by manufacturer's recommendations, do not allow drying time between coats to exceed 72 hours. Under conditions of direct sunlight or elevated ambient temperatures of 32 degrees C 90 degrees F or greater, limit intercoat drying period to a maximum of 24 hours.

3.3.2 Repair of Defects

Repair detected coating holidays, thin areas, and exposed areas damaged prior to or during installation by surface treatment and application of additional coating or by manufacturer's recommendations. Allow a period of at least 72 hours to pass following final coat before placing in immersion service.

3.3.3 [Three-Coat Epoxy-Polyamide System]

**
NOTE: Choose this paragraph or the paragraph below entitled "Two-Coat Coal Tar Epoxy-Polyamide System."
**

**
NOTE: Each formula of epoxy polyamide must be applied at about 0.1375 mm 5 1/2 mil wet film thickness to obtain 0.075 mm 3 mil dry film thickness. A greater thickness is required if coating is thinned. The practical coverage rate of each coat at this thickness is about 5 square meters/liter 200 square feet/gallon. Formula 150 should be used as prime coat with other colors used for other two coats.
**

Apply each coat at a dry film thickness of between 0.075 mm and 0.10 mm 3 mils and 4 mils.
3.3.4 [Two-Coat Coal Tar Epoxy-Polyamide System]

**
NOTE: Each unthinned coat of coal tar epoxy-polyamide must be applied at minimum of 0.275 mm 11 mils to obtain 0.20 mm 8 mils dry film thickness. A greater thickness is required if coating is thinned. The practical coverage rate for each coat is about 3 square meters/liter 120 square feet/gallon at 0.20 mm 8 mils dry film thickness.
**

Apply each coat at a dry film thickness of not less than 0.20 mm 8 mils.

3.3.5 Dry Film Thickness

Provide total system minimum dry film thickness of [0.225] [0.40] mm [9] [16] mils. Measure using a magnetic gage.

3.4 SURFACES TO BE COATED

3.4.1 Steel Waterfront Construction

[Unless otherwise stated,] coat steel work.

3.5 FIELD TESTS

[Conduct testing in presence of Contracting Officer.]

3.5.1 Holiday Testing

Prior to installation, test for holidays in total coating system. Use a low-voltage holiday detector of less than 90 volts in accordance with manufacturer's instructions. After repair of holidays by surface treatment and application of additional coating or by manufacturer's recommendation, retest with a low-voltage holiday detector.

3.5.2 Dry Film Thickness

After repair of holidays, measure dry film thickness using a magnetic dry film thickness gage in accordance with ASTM D7091 and ASTM E376. Re-measure after an additional coat is applied, and add it to meet minimum thickness requirements.

-- End of Section --