SECTION TABLE OF CONTENTS

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

SECTION 06 71 33

FIBERGLASS REINFORCED PLASTIC (FRP) LADDERS

02/15

PART 1 GENERAL

1.1 REFERENCES
1.2 ADMINISTRATIVE REQUIREMENTS
 1.2.1 Pre-Installation Meetings
1.3 SUBMITTALS
1.4 QUALITY CONTROL
 1.4.1 Qualification of Manufacturer
 1.4.2 Qualification of Engineer of Record
1.5 DELIVERY, HANDLING, AND STORAGE

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Design Requirements
 2.1.2 Performance Requirements
 2.1.2.1 Structural Performance of Ladders
 2.1.2.2 Thermal Movements
 2.1.2.3 Safety Performance of Ladders
 2.2 COMPONENTS
 2.2.1 Ladders
 2.2.2 Ladder Safety Cages

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Fabrication
 3.1.2 Fastening to Construction-In-Place
3.2 CLOSEOUT ACTIVITIES
 3.2.1 Manufacturer's Warranty

-- End of Section Table of Contents --
NOTE: This guide specification covers fiberglass reinforced plastic (FRP) ladders, customarily manufactured to meet specific requirements in building construction and fabricated FRP items not a part of the structural FRP components or framework.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

Include in drawings a complete design indicating the character of the work to be performed and giving the following:

Location and details of each fabricated FRP ladder component showing all dimensions, shapes, and sizes of members, connections, and the relation of items to other building components.

Anchorage devices embedded in other construction, including but not limited to, precast concrete wall panels, precast concrete structural members, precast concrete roof decking, brick and block masonry, and precast stone work.
Anchorage devices to structural steel framework, including, but not limited to, steel bar grating, steel floor plates, and structural steel roof or floor decking.

This Section includes, but is not limited to, new fiberglass reinforced plastic (FRP) ladder systems including safety ladder cages, mounting systems and related accessories.

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN LADDER INSTITUTE (ALI)

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASCE 7 (2010; Errata 2011; Supp 1 2013) Minimum Design Loads for Buildings and Other Structures

ASTM INTERNATIONAL (ASTM)

1.2 ADMINISTRATIVE REQUIREMENTS

1.2.1 Pre-Installation Meetings

Within [30] [_____] calendar days of Contract Award, a pre-installation meeting will be scheduled by the Contracting Officer. Submit the following for review:

a. Qualification of Manufacturer

b. Qualification of Engineer of Record

c. Manufacturer's Catalog Data

Include two copies of manufacturers specifications, load tables, dimension diagrams, and anchor details for the following items:

(1) FRP Ladders and Ladder Safety Cages

(2) Anchorage Materials
d. Fabrication and Installation Drawings and Details

Include plans, elevations, sections, and details of FRP fabrications and their connections. Show anchorage and all accessory items.

Provide templates for anchors and bolts specified for installation under other Sections.

Provide structural analysis data complying with design loads, signed and sealed by the qualified professional engineer responsible for their preparation.

e. Manufacturer's Recommendations

Provide shipping, handling, erection procedures along with care and maintenance after installation.

f. Manufacturer's Sample Warranty

1.3 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
 Qualification of Manufacturer[; G[, [____]]]
 Qualification of Engineer of Record[; G[, [____]]]

SD-02 Shop Drawings
 Fabrication and Installation Drawings and Details[; G[, [____]]]

SD-03 Product Data
 Manufacturer's Catalog Data[; G[, [____]]]

SD-06 Test Reports
 Ultraviolet Testing[; G[, [____]]]
 Thermal Expansion[; G[, [____]]]
 Flame Spread[; G[, [____]]]

SD-07 Certificates
 Manufacturer's Sample Warranty[; G[, [____]]]

SD-08 Manufacturer's Instructions
 Manufacturer's Recommendations[; G[, [____]]]

SD-11 Closeout Submittals
 Manufacturer's Warranty[; G[, [____]]]

1.4 QUALITY CONTROL

1.4.1 Qualification of Manufacturer

Fiberglass Reinforced Plastic (FRP) manufacturer is required to have a minimum of [10][____] years experience in manufacturing FRP products.

[A record of a minimum of at least 5 previous, separate, similar installations within the last [5] [10] [____] years.]

] Provide manufacturer's Warranty for all FRP products against defects in material and workmanship for a minimum of [5] [____] years.[Manufacturer to provide evidence of ISO 9001-2000 standard certification.]
1.4.2 Qualification of Engineer of Record

Ensure Engineer of Record (ER) is currently licensed within the jurisdiction of the project.

Provide documentation that the Engineer of Record (ER) is approved, authorized, and currently licensed by the State of [____], and has a minimum of five years experience as an approved Engineer for manufacturers of similar ladder systems. Supply the names and locations of five projects of similar size and scope for which the ER has provided engineering calculations using the manufacturer's products submitted for this project within the previous three years. Provide ER certified engineering calculations and sealed documents for:

a. Meeting ASCE 7 requirements in accordance with International Building Code

b. Fabrication and installation drawings and details

1.5 DELIVERY, HANDLING, AND STORAGE

Deliver all manufactured materials in original, unbroken pallets, packages, containers, or bundles bearing the label of the manufacturers, clearly marked and identified relative to the complete system. Provide all adhesives, resins and their catalysts and hardeners in clearly marked or noted crates or boxes to facilitate their safe movement to a dry indoor storage facility with a constant temperature range between 21.11 and 29.44 degrees C 70 and 85 degrees F until they are required.

Submit manufacturer's recommendations for shipping and handling. Handle all materials to prevent abrasion, cracking, chipping, twisting, or other deformations and other types of damage.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Ensure all ladder side rails, rungs, mounting brackets, cage straps, and related safety rail system are FRP structural shapes manufactured to comply with or exceed the specified standards identified in this Section. Provide FRP ladders and ladder safety cages and anchorage materials, including cage hoops, brackets, and all other structural shapes composed of reinforced fiberglass components and resin in qualities, quantities, properties, arrangements and dimensions as specified in the Contract Documents. Ensure complete assembly meets the minimum requirements of ASCE 7, and 29 CFR 1910.27.

2.1.1 Design Requirements

Ensure fiberglass reinforcement is a combination of continuous roving, continuous strand mat, bi-directional roving mat and surfacing veil in sufficient quantities as required by the application and/or physical properties. Clearly identify components per ASTM D4000. Submit documentation verifying structural integrity in relation to thermal expansion.

Ensure all finished surfaces of FRP items are smooth, resin-rich, free of voids and dry spots, cracks, crazes or unreinforced areas. Provide system which is completely covered with resin protection against exposure due to
wear, weathering, and ultraviolet light damage. Submit ultraviolet testing (UV) results and documented protection with:

a. Integral UV inhibitors in the resin.

b. A synthetic resin rich surfacing veil, meeting or exceeding the requirements of ASTM D1148.

Provide FRP products which have a tested flame spread rating of 25 or less per ASTM E84 Tunnel Test, with a ladder system meeting the minimum requirements of ASTM D430 and ASTM D495.

Provide 316 stainless steel bolts for attaching ladder cage vertical bars to hoops, ladder hoops to brackets, ladder cage brackets to the ladder, wall brackets to the ladder, and landing safety rails to the system. Mechanically attach all rungs to the ladder with 18-8 stainless steel rivets and chemically bond with resin.

All ladder and cage components are to be integrally pigmented yellow. All wall and vertical rail base mount brackets are to be light gray.

2.1.2 Performance Requirements

Provide structural shapes in the ladder system meeting minimum longitudinal mechanical properties as follows:

<table>
<thead>
<tr>
<th>Property</th>
<th>Standard</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>2.068427e+008 pascal</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>ASTM D638</td>
<td>1.723689e+010 pascal</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>2.068427e+008 pascal</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>ASTM D790</td>
<td>1.241056e+010 pascal</td>
</tr>
<tr>
<td>Flexural Modulus-Full Section</td>
<td></td>
<td>1.930532e+010 pascal</td>
</tr>
<tr>
<td>Short Beam Shear</td>
<td>ASTM D2344/D2344M</td>
<td>3.102641e+007 pascal</td>
</tr>
<tr>
<td>Shear Modulus-Transverse</td>
<td></td>
<td>3.102641e+009 pascal</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>ASTM D696</td>
<td>2.032e-005 cm/cm/m</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>ASTM E84</td>
<td>2.032e-005 cm/cm/m</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>30,000 psi</td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>ASTM D638</td>
<td>2,500,000 psi</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>30,000 psi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>ASTM D790</td>
<td>1,800,000 psi</td>
</tr>
</tbody>
</table>
Flexural Modulus-Full Section
- 2,800,000 psi

Short Beam Shear
- ASTM D2344/D2344M
- 4,500 psi

Shear Modulus-Transverse
- 450,000 psi

Coefficient of Thermal Expansion
- ASTM D696
- 0.000008 in/in/°F

Flame Spread
- ASTM E84
- 25 or less

2.1.2.1 Structural Performance of Ladders

Provide ladders capable of withstanding the effects of gravity loads as per ASCE 7 and the International Building Code, as well as loads and stresses within limits and under conditions specified in 29 CFR 1910.27 and ALI A14.3.

Ladder to support a concentrated vertical load of 34.02 kg [1200] pounds applied at mid-span of the rung.

2.1.2.2 Thermal Movements

Provide exterior metal fabrications that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss. The design criteria temperature change (range) is 49 degrees C 120 degrees F, ambient; 83 degrees C 180 degrees F, material surfaces.

2.1.2.3 Safety Performance of Ladders

Provide a ladder system, which fully complies with NFPA 101, OSHA 29 CFR 1910.27 and ALI A14.3 for distance between rungs, cleats, steps and minimum clearances for cages and climbing space.

2.2 COMPONENTS

2.2.1 Ladders

The ladder side rails are a continuous pultruded 4.5 cm 1-3/4-inch square tube with a minimum wall thickness of 0.635 cm 1/4-inch or greater. The ladder rungs are to be 3.175 cm 1-1/4-inch diameter pultruded structural shapes, continuously fluted to provide a non-slip surface. Rungs that are gritted as a secondary operation are not permitted. Fit the rungs in the centerline of the side rails.

Fabricate ladder wall and floor mounts from pultruded angles, 0.953 3/8-inch minimum thickness. Mechanically attach all ladder rungs to ladder side rails by use of stainless steel rivets and a chemical bond of epoxy.

Protect all pultruded ladder components from ultraviolet (UV) attack by providing integral UV inhibitors in the resin and a synthetic surfacing veil to help produce a resin rich surface.

2.2.2 Ladder Safety Cages

**
NOTE: Include the following for projects requiring ladder safety cages.

Provide primary hoops at the top and bottom of the safety cage, spacing to be no more than 6 m 20-feet o.c. Provide secondary intermediate hoops with spacing no more than 1200 mm 48-inches o.c. between primary hoops.

Ensure safety cage vertical bars are 3.81 cm 1-1/2-inch wide by 1.59 cm 5/8-inch pultruded I-beam shapes and offer protection to workers from exposed hardware. Ensure safety cage hoops and brackets are manufactured by the open mold hand lay-up process. Ensure all cage hoops are a minimum 7.62 cm 3-inches wide by 0.635 cm 1/4-inch thick.

PART 3 EXECUTION

3.1 INSTALLATION

Install fabricated FRP work in accordance with the approved detail drawings and descriptive data for each item of fabricated FRP, in conformance with 29 CFR 1926, and as specified.

Assemble and install ladder system and all components in strict accordance with the manufacturer's assembly documentation. Seal all cut or drilled surfaces per manufacturer's instructions. Provide adequate ventilation during all drilling, cutting, and resin application procedures.

3.1.1 Fabrication

The design and layout of ladders and safety cages to comply with ALI A14.3 and OSHA 29 CFR 1910.27. All ladder rungs are to penetrate the tube side wall of the ladder rails and the connection is to be both chemically locking epoxy and mechanically locking rivets.

Fully shop assemble ladders. Test assemble safety cages; drill and fit to ensure proper field assembly. Leave safety cage brackets attached with bolts to the ladder for shipping, but disassemble ladder cage components. Package and ship each set of cage components with each respective ladder.

Field attach hoops to the brackets. Seal all cut, machined edges, holes and notches to provide maximum corrosion resistance. Contractor to coat all field fabricated cuts in accordance with the manufacturer's instructions.

3.1.2 Fastening to Construction-In-Place

Provide anchorage devices and fasteners where necessary for fastening fabricated FRP items to construction-in-place. Fastening to include threaded fasteners for concrete inserts embedded in cast-in-place concrete; masonry anchorage devices and threaded fasteners for solid masonry and concrete-in-place; toggle bolts for hollow masonry and stud partitions; through bolting for masonry and wood construction; lag bolts and wood screws for wood construction; and connections for structural steel.

3.2 CLOSEOUT ACTIVITIES

3.2.1 Manufacturer's Warranty
Submit [_____] copies of manufacturer's warranty [30][_____] calendar days before final inspection.

-- End of Section --