UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated April 2015

SECTION TABLE OF CONTENTS

DIVISION 04 - MASONRY

SECTION 04 20 00

MASONRY

02/11

PART 1 GENERAL

1.1 REFERENCES
1.2 SYSTEM DESCRIPTION
 1.2.1 Local/Regional Materials
 1.2.2 Environmental Data
 1.2.3 Plastic Identification
 1.2.4 Design Requirements
 1.2.4.1 Unit Strength Method
 1.2.4.2 Seismic Requirement
 1.2.4.3 Special Inspection
 1.2.4.4 Masonry Strength
 1.2.5 Additional Requirements
 1.2.6 Metrication
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
 1.4.1 Appearance
 1.4.2 Contamination
 1.4.3 Sample Masonry Panels
 1.4.3.1 Configuration
 1.4.3.2 Composition
 1.4.3.3 Construction Method
 1.4.3.4 Usage
 1.4.4 Masonry Inspector Qualifications
 1.4.5 Detail Drawings
1.5 DELIVERY, STORAGE, AND HANDLING
 1.5.1 Masonry Units
 1.5.2 Reinforcement, Anchors, and Ties
 1.5.3 Cementitious Materials, Sand and Aggregates
1.6 PROJECT/SITE CONDITIONS
 1.6.1 Hot Weather Installation
 1.6.2 Cold Weather Installation

PART 2 PRODUCTS
2.1 GENERAL REQUIREMENTS
2.2 CLAY OR SHALE BRICK
 2.2.1 Solid Clay or Shale Brick
 2.2.2 Hollow Clay or Shale Brick
 2.2.3 Sand-Lime Brick
 2.2.4 Refractory Brick
 2.2.5 Closure or Utility Brick
 2.2.6 Adobe Brick
 2.2.6.1 Traditional Adobe
 2.2.6.2 Semi-Stabilized Adobe
 2.2.6.3 Fully Stabilized Adobe
2.3 CONCRETE BRICK
2.4 SALVAGED BRICK
2.5 CONCRETE MASONRY UNITS (CMU)
 2.5.1 Aggregates
 2.5.2 Kinds and Shapes
 2.5.2.1 Architectural Units
 2.5.2.2 Patterned, Decorative Screen Units
 2.5.3 Fire-Rated CMU
2.6 COMPRESSED EARTH BLOCK
2.7 PRECAST CONCRETE ITEMS
 2.7.1 Lintels
 2.7.2 Sills and Copings
 2.7.3 Splash Blocks
 2.7.4 Flue Linings and Thimbles
2.8 STONE ITEMS
2.9 MORTAR FOR STRUCTURAL MASONRY
2.10 MASONRY MORTAR
 2.10.1 Admixtures for Masonry Mortar
 2.10.2 Colored Mortar
 2.10.3 Hydrated Lime and Alternates
 2.10.4 Cement
 2.10.5 Pre-Mixed Mortar
 2.10.6 Sand and Water
2.11 WATER-REPELLENT ADMIXTURE
2.12 GROUT AND READY-MIXED GROUT
 2.12.1 Admixtures for Grout
 2.12.2 Grout Barriers
2.13 ANCHORS, TIES, AND BAR POSITIONERS
 2.13.1 Wire Mesh Ties
 2.13.2 Wall Ties
 2.13.3 Dovetail Anchors
 2.13.4 Adjustable Anchors
 2.13.5 Bar Positioners
2.14 JOINT REINFORCEMENT
2.15 REINFORCING STEEL BARS AND RODS
2.16 CONTROL JOINT KEYS
2.17 RIGID BOARD-TYPE INSULATION
2.18 EXPANSION-JOINT MATERIALS
2.19 THROUGH WALL FLASHING
 2.19.1 Coated-Copper Flashing
 2.19.2 Copper or Stainless Steel Flashing
 2.19.3 Reinforced Membrane Flashing
2.20 WEEP HOLE VENTILATORS

PART 3 EXECUTION

3.1 PREPARATION
 3.1.1 Protection
3.1.1.1 Air Temperature 4 to 0 Degrees C 40 to 32 Degrees F
3.1.1.2 Air Temperature 0 to minus 4 Degrees C 32 to 25 Degrees F
3.1.1.3 Air Temperature Minus 4 to Minus 7 Degrees C 25 to 20 Degrees F
3.1.1.4 Air Temperature Minus 7 Degrees C 20 Degrees F and Below

3.1.2 Completed Masonry and Masonry Not Being Worked On
3.1.2.1 Mean Daily Air Temperature 4 to 0 Degrees C 40 to 32 Degrees F
3.1.2.2 Mean Daily Air Temperature 0 to Minus 4 Degrees C 32 to 25 Degrees F
3.1.2.3 Mean Daily Air Temperature Minus 4 to Minus 7 Degrees C 25 to 20 Degrees F
3.1.2.4 Mean Daily Temperature Minus 7 Degrees C 20 Degrees F and Below

3.1.3 Stains
3.1.4 Loads
3.1.5 Surfaces

3.2 LAYING MASONRY UNITS
3.2.1 Forms and Shores
3.2.2 Reinforced Concrete Masonry Units Walls
3.2.3 Concrete Masonry Units
3.2.4 Clay or Shale Brick Units
 3.2.4.1 Wetting of Units
 3.2.4.2 Solid Units
 3.2.4.3 Hollow Units
 3.2.4.4 Brick-Faced Walls
 3.2.4.4.1 Collar Joints
 3.2.4.4.2 Brick Sills
 3.2.4.5 Cavity Walls
 3.2.4.6 Reinforced Brick Walls
 3.2.4.7 Chimneys
 3.2.4.8 Brick Veneer
3.2.5 Tolerances
3.2.6 Cutting and Fitting
3.2.7 Jointing
 3.2.7.1 Flush Joints
 3.2.7.2 Tooled Joints
 3.2.7.3 Door and Window Frame Joints
3.2.8 Joint Widths
 3.2.8.1 Concrete Masonry Units
 3.2.8.2 Prefaced Concrete Masonry Units
 3.2.8.3 Brick
3.2.9 Embedded Items
3.2.10 Unfinished Work
3.2.11 Masonry Wall Intersections
3.2.12 Partitions

3.3 COMPRESSED EARTH BLOCK
3.4 ANCHORED VENEER CONSTRUCTION
3.5 WEEP HOLES
3.6 COMPOSITE WALLS
3.7 MORTAR MIX
3.8 REINFORCING STEEL
 3.8.1 Positioning Bars
 3.8.2 Splices
3.9 JOINT REINFORCEMENT INSTALLATION
3.10 PLACING GROUT
 3.10.1 Vertical Grout Barriers for Fully Grouted Walls
 3.10.2 Horizontal Grout Barriers
 3.10.3 Grout Holes and Cleanouts
3.10.3.1 Grout Holes
3.10.3.2 Cleanouts for Hollow Unit Masonry Construction
3.10.3.3 Cleanouts for Solid Unit Masonry Construction
3.10.4 Grouting Equipment
3.10.4.1 Grout Pumps
3.10.4.2 Vibrators
3.10.5 Grout Placement
3.10.5.1 Low-Lift Method
3.10.5.2 High-Lift Method
3.11 BOND BEAMS
3.12 CONTROL JOINTS
3.13 INDICATED JOINTS
3.14 SHELF ANGLES
3.15 LINTELS
3.15.1 Masonry Lintels
3.15.2 Precast Concrete and Steel Lintels
3.16 SILLS AND COPINGS
3.17 ANCHORAGE TO CONCRETE AND STRUCTURAL STEEL
3.17.1 Anchorage to Concrete
3.17.2 Anchorage to Structural Steel
3.18 PARGING
3.19 INSULATION
3.20 SPLASH BLOCKS
3.21 POINTING AND CLEANING
3.21.1 Dry-Brushing
3.21.2 Clay or Shale Brick Surfaces
3.22 BEARING PLATES
3.23 PROTECTION
3.24 WASTE MANAGEMENT
3.24.1 Separate and Recycle Waste
3.24.2 Take-Back Program
3.25 TEST REPORTS
3.25.1 Field Testing of Mortar
3.25.2 Field Testing of Grout
3.25.3 Efflorescence Test
3.25.4 Prism Tests
3.25.5 Single-Wythe Masonry Wall Water Penetration Test

ATTACHMENTS:

sketches

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for reinforced and nonreinforced masonry.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: This guide specification covers reinforced and nonreinforced masonry and must be tailored to reflect the type of construction used in the design.

In general, reinforced masonry is defined as masonry construction which contains vertical bar reinforcement, horizontal bar or joint reinforcement, mortar, and grout combined in a manner that the component materials will act together to resist the design loading conditions. Design will conform to ACI 530/530.1/ASCE 5 BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES.

Masonry not meeting the above definition but bonded together with mortar and containing, if necessary,
the minimum amount of reinforcement for crack
tcontrol and vertical stiffeners, is classified as
nonreinforced masonry.

The following information will be shown on the
project drawings:

1. Locations and dimensions of each type of masonry
work; wall sections and anchor details.

2. Color, texture, and size of brick and color of
mortar if other than natural gray.

3. Bond pattern if other than running bond.

4. All flashing locations and details.

5. Control joint and expansion joint locations and
details.

6. Special brick shapes if required.

7. Compressive strength (f'\text{m}) of units, mortar,
grout, or entire assembly and fy of reinforcing.

8. Reinforcing tie, splice, and bond beam details.

9. Size and location of any pipes, ducts, door and
window framing, or other embedded items.

10. Equivalent thickness or UL assembly for fire
rated walls.

1.1 REFERENCES

NOTE: This paragraph is used to list the
publications cited in the text of the guide
specification. The publications are referred to in
the text by basic designation only and listed in
this paragraph by organization, designation, date,
and title.

Use the Reference Wizard's Check Reference feature
when you add a RID outside of the Section's
Reference Article to automatically place the
reference in the Reference Article. Also use the
Reference Wizard's Check Reference feature to update
the issue dates.

References not used in the text will automatically
be deleted from this section of the project
specification when you choose to reconcile
references in the publish print process.

The publications listed below form a part of this specification to the
extent referenced. The publications are referred to within the text by the
basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 1-2 2014) Building Code Requirements for Structural Concrete and Commentary

ACI 318M (2011; Errata 2013) Building Code Requirements for Structural Concrete & Commentary

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C140/C140M</td>
<td>(2014b) Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units</td>
</tr>
<tr>
<td>ASTM C216</td>
<td>(2015) Facing Brick (Solid Masonry Units Made from Clay or Shale)</td>
</tr>
<tr>
<td>ASTM C27</td>
<td>(1998; R 2008) Fireclay and High-Alumina Refractory Brick</td>
</tr>
<tr>
<td>ASTM C315</td>
<td>(2007; R 2011) Clay Flue Linings</td>
</tr>
<tr>
<td>ASTM C55</td>
<td>(2014a) Concrete Brick</td>
</tr>
<tr>
<td>ASTM C593</td>
<td>(2006; R 2011) Fly Ash and Other Pozzolans for Use with Lime for Soil Stabilization</td>
</tr>
<tr>
<td>ASTM C62</td>
<td>(2013a) Building Brick (Solid Masonry Units Made from Clay or Shale)</td>
</tr>
<tr>
<td>ASTM C641</td>
<td>(2009) Staining Materials in Lightweight Concrete Aggregates</td>
</tr>
<tr>
<td>ASTM C652</td>
<td>(2014) Hollow Brick (Hollow Masonry Units Made from Clay or Shale)</td>
</tr>
<tr>
<td>ASTM C73</td>
<td>(2014) Calcium Silicate Brick (Sand-Lime Brick)</td>
</tr>
<tr>
<td>ASTM C780</td>
<td>(2014b) Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry</td>
</tr>
<tr>
<td>ASTM C90</td>
<td>(2014) Loadbearing Concrete Masonry Units</td>
</tr>
</tbody>
</table>
1.2 SYSTEM DESCRIPTION

1.2.1 Local/Regional Materials

**
NOTE: Using local materials can help minimize transportation impacts, including fossil fuel consumption, air pollution, and labor. Using materials harvested and manufactured within a 500 mile radius from the project site contributes to the following LEED credit: MR5. Coordinate with Section 01 33 29 SUSTAINABILITY REPORTING. Use second option if Contractor is choosing local materials in

INTERNATIONAL CODE COUNCIL (ICC)

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 3-310-04 (2013) Seismic Design for Buildings

U.S. GREEN BUILDING COUNCIL (USGBC)

LEED BD+C (2009; R 2010) Leadership in Energy and Environmental Design (LEED-NC)
accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Use second option for USACE projects. Army projects should include option only if pursuing this LEED credit.

**

[Use materials or products extracted, harvested, or recovered, as well as manufactured, within a [800] km [500] mile radius from the project site, if available from a minimum of three sources.] [See Section 01 33 29 SUSTAINABILITY REPORTING for cumulative total local material requirements. Masonry materials may be locally available.] Submit documentation indicating distance between manufacturing facility and the project site, and distance of raw material origin from the project site. Indicate relative dollar value of local/regional materials to total dollar value of products included in the project.

1.2.2 Environmental Data

**

NOTE: ASTM E2129 provides for detailed documentation of the sustainability aspects of products used in the project. This level of detail may be useful to the Contractor, Government, building occupants, or the public in assessing the sustainability of these products.

**

Submit manufacturer's descriptive data. Documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project. [Submit Table 1 of ASTM E2129 for the following products: [____].]

1.2.3 Plastic Identification

**

NOTE: The marking system indicated below is intended to provide assistance in identification of products for making subsequent decisions as to handling, recycling, or disposal.

**

Verify that plastic products to be incorporated into the project are labeled in accordance with ASTM D7611/D7611M. Where products are not labeled, submit product data indicating polymeric information in the Operation and Maintenance Manual.

<table>
<thead>
<tr>
<th>Type</th>
<th>Plastic Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polyethylene Terephthalate (PET, PETE)</td>
</tr>
<tr>
<td>2</td>
<td>High Density Polyethylene (HDPE)</td>
</tr>
<tr>
<td>3</td>
<td>Vinyl (Polyvinyl Chloride or PVC)</td>
</tr>
</tbody>
</table>
1.2.4 Design Requirements

1.2.4.1 Unit Strength Method

**

NOTE: Use this method for clay masonry conforming to ASTM C216, ASTM C62, or ASTM C652, and tested by ASTM C67, with bed joints not exceeding 16 mm (5/8 inch) and grouted, ASTM C476, with strength at least equal to f'm, and also for concrete masonry units conforming to ASTM C90 or ASTM C55, with bed joints and grout same as clay masonry. If masonry does not meet these requirements, use Prism Test Method.

**

Compute compressive strength of masonry system "Unit Strength Method", ACI 530/530.1. Submit calculations and certifications of unit and mortar strength.

1.2.4.2 Seismic Requirement

**

NOTE: For Army projects refer to UFC 3-310-04; for Navy projects refer to minimum seismic reinforcing required in UFC 1-200-01, Chapter 13.

**

In addition to design requirements of ICC IBC, provide additional seismic reinforcement [in accordance with UFC 3-310-04] [as detailed on [the drawings] [sketches [_____] which are attached at the rear of this section]]. The total minimum reinforcing percentage for structural walls shall be 0.20 percent and non-structural walls shall be 0.15 percent. The maximum spacing of reinforcing bars shall be as follows:

<table>
<thead>
<tr>
<th>Wall Type</th>
<th>Vertical</th>
<th>Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural</td>
<td>0.609 m²4 inches</td>
<td>1.219 m²48 inches</td>
</tr>
<tr>
<td>Non-structural</td>
<td>1.219 m²48 inches</td>
<td>2.032 m²80 inches</td>
</tr>
</tbody>
</table>

Bond beams are required at the top of footings, at the bottom and top of openings at roof and floor levels, and at the top of parapet walls.
1.2.4.3 Special Inspection

**

NOTE: Include this paragraph only when special inspection and testing for seismic-resisting systems is required by Appendix 11A of ASCE 7.

This paragraph will be applicable to both new buildings designed according UFC 3-310-04 SEISMIC DESIGN FOR BUILDINGS, and to existing building seismic rehabilitation designs.

The designer must indicate on the drawings all locations and all features for which special inspection and testing is required in accordance with UFC 3-310-04 and Appendix 11A of ASCE 7. This includes indicating the locations of all structural components and connections requiring inspection.

Add any additional requirements as necessary.
**

Perform special inspections and testing for seismic-resisting systems and components in accordance with UFC 3-310-04 SEISMIC DESIGN FOR BUILDINGS and Section 01 45 35 SPECIAL INSPECTIONS.

1.2.4.4 Masonry Strength

Determine masonry strength in accordance with ACI 530/530.1; submit test reports on three prisms as specified in ACI 530/530.1. The cost of testing shall be paid by the Contractor.

1.2.5 Additional Requirements

**

NOTE: On small projects, requirement for spare vibrator may be deleted.
**

a. Maintain at least one spare vibrator on site at all times.

b. Provide bracing and scaffolding necessary for masonry work. Design bracing to resist wind pressure as required by local code.

1.2.6 Metrication

The Contractor has the option to use either hard metric or substitute inch-pound (soft-metric) CMU products. If the Contractor decides to substitute inch-pound CMU products, meet the following additional requirements:

a. The metric dimensions indicated on the drawings shall not be altered to accommodate inch-pound CMU products either horizontally or vertically. The 100 mm building module shall be maintained, except for the CMU products themselves.

b. Mortar joint widths shall be maintained as specified.

c. Rebars shall not be cut, bent or eliminated to fit into the inch-pound
CMU products module.

d. Brick and inch-pound CMU products shall not be reduced in size by more than one-third (1/3) in height and one-half (1/2) in length. Cut CMU products shall not be located at ends of walls, corners, and other openings.

e. Cut, exposed brick and CMU products shall be held to a minimum and located where they would have the least impact on the architectural aesthetic goals of the facility.

f. Other building components, built into the CMU products, such as window frames, door frames, louvers, grilles, fire dampers, etc., that are required to be metric, shall remain metric.

1.3 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G"
designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings; G[, [_____]]

SD-03 Product Data

Local/Regional Materials; (LEED BD+C)
Clay or Shale Brick; G[, [_____]]; (LEED BD+C)
Cement; G[, [_____]]; (LEED BD+C)
Insulation; G[, [_____]]
Cold Weather Installation; G[, [_____]]
Salvaged Brick; G[, [_____]]; (LEED BD+C)
Water-Repellant Admixture; G[, [_____]]

SD-04 Samples

Concrete Masonry Units (CMU); G[, [_____]]
Concrete Brick; G[, [_____]]
Stone Items; G[, [_____]]
Clay or Shale Brick; G[, [_____]]
Anchors, Ties, and Bar Positioners; G[, [_____]]
Expansion-Joint Materials; G[, [_____]]
Joint Reinforcement; G[, [_____]]
Insulation; G[, [_____]]
Portable Panel; G[, [_____]]

SD-05 Design Data

Pre-mixed Mortar; G[, [_____]]
Unit Strength Method; G[, [_____]]

SD-06 Test Reports

Efflorescence Test; G[, [_____]]
Field Testing of Mortar; G[, [_____]]
Field Testing of Grout; G[, [_____]]
Prism tests; G[, [_____]]
Masonry Cement; G[, [_____]]
Fire-rated CMU; G[, [_____]]
Masonry Inspector Qualifications; G[, [_____]]
Single-Wythe Masonry Wall Water Penetration Test

SD-07 Certificates

Clay or Shale Brick
Concrete Brick
Concrete Masonry Units (CMU)
Anchors, Ties, and Bar Positioners
Expansion-Joint Materials
Joint Reinforcement
Masonry Cement
Insulation
1.4 QUALITY ASSURANCE

1.4.1 Appearance

**
NOTE: A typical manufacturing batch of brick produces about 150,000 brick. Confirm with manufacturer if the job can be run in one batch to utilize the desirable bracketed option in the following paragraph.
**

[Manufacture bricks at one time and from the same batch.] Blend all brick to produce a uniform appearance when installed. An observable "banding" or "layering" of colors or textures caused by improperly mixed brick is unacceptable.

1.4.2 Contamination

When using bricks containing contaminated soil, supplier shall certify that the hazardous waste is neutralized by the manufacturing process and that no additional pollutants will be released, or that the product is free from hazardous contaminants.

1.4.3 Sample Masonry Panels

**
NOTE: Sample panels will be required for structures having over 185 square meters (2,000 square feet) of exterior wall area, including openings, and for smaller structures where appearance is important. The list of items to be shown by the sample panel will be edited to provide only the representative items. Typical installation of electrical conduit and boxes may be illustrated by the sample panel when deemed appropriate.
**

After material samples are approved and prior to starting masonry work, construct a portable panel of clay or shale brick and sample masonry panels for each type and color of masonry required. At least 48 hours prior to constructing the sample panel or panels, submit written notification to the Contracting Officer. Submit one panel of clay or shale brick, 600 by 600 mm 2 by 2 feet, containing approximately 24 brick facings to establish range...
of color and texture. Sample panels shall not be built in, or as part of the structure, but shall be located where directed.

1.4.3.1 Configuration

Panels shall be L-shaped or otherwise configured to represent all of the wall elements. Panels shall be of the size necessary to demonstrate the acceptable level of workmanship for each type of masonry represented on the project. The minimum size of a straight panel or a leg of an L-shaped panel shall be 2.5 m 8 feet long by [1.2] [1.8] m [4] [6] feet high.

1.4.3.2 Composition

Panels shall show full color range, texture, and bond pattern of the masonry work. The Contractor's method for mortar joint tooling; grouting of reinforced vertical cores, collar joints, bond beams, and lintels; positioning, securing, and lapping of reinforcing steel; positioning and lapping of joint reinforcement (including prefabricated corners); and cleaning of masonry work shall be demonstrated during the construction of the panels. Installation or application procedures for anchors, wall ties, CMU control joints, brick expansion joints, insulation, flashing, brick soldier, row lock courses and weep holes shall be shown in the sample panels. The panels shall contain [a masonry bonded corner] [a stacked bond corner] that includes a bond beam corner. Panels shall show [parging] [and] [installation of electrical boxes and conduit]. Panels that represent reinforced masonry shall contain a 600 by 600 mm 2 by 2 foot opening placed at least 600 mm 2 feet above the panel base and 600 mm 2 feet away from all free edges, corners, and control joints. Required reinforcing shall be provided around this opening as well as at wall corners and control joints.

1.4.3.3 Construction Method

Where anchored veneer walls are required, demonstrate and receive approval for the method of construction; i.e., either bring up the two wythes together or separately, with the insulation and appropriate ties placed within the specified tolerances across the cavity. Temporary provisions shall be demonstrated to preclude mortar or grout droppings in the cavity and to provide a clear open air space of the dimensions shown on the drawings. Where masonry is to be grouted, demonstrate and receive approval on the method that will be used to bring up the masonry wythes; support the reinforcing bars; and grout cells, bond beams, lintels, and collar joints using the requirements specified herein. If sealer is specified to be applied to the masonry units, sealer shall be applied to the sample panels. Panels shall be built on a properly designed concrete foundation.

1.4.3.4 Usage

The completed panels shall be used as the standard of workmanship for the type of masonry represented. Masonry work shall not commence until the sample panel for that type of masonry construction has been completed and approved. Panels shall be protected from the weather and construction operations until the masonry work has been completed and approved. After completion of the work, the sample panels, including all foundation concrete, shall become the property of the Contractor and shall be removed from the construction site.
1.4.4 Masonry Inspector Qualifications

**
NOTE: This paragraph will be used for masonry construction only when f'm used in design is more than 10 MPa (1500 psi).
**

A qualified masonry inspector approved by the Contracting Officer shall perform inspection of the masonry work. Minimum qualifications for the masonry inspector shall be 5 years of reinforced masonry inspection experience or acceptance by a State, municipality, or other governmental body having a program of examining and certifying inspectors for reinforced masonry construction. The masonry inspector shall be present during preparation of masonry prisms, sampling and placing of masonry units, placement of reinforcement (including placement of dowels in footings and foundation walls), inspection of grout space, immediately prior to closing of cleanouts, and during grouting operations. The masonry inspector shall assure compliance with the drawings and specifications. The masonry inspector shall keep a complete record of all inspections and shall submit daily written reports to the Quality Control Supervisory Representative reporting the quality of masonry construction. Submit copies of masonry inspector reports.

1.4.5 Detail Drawings

Submit detail drawings showing bar splice locations. If the Contractor opts to furnish inch-pound CMU products, drawings showing elevation of walls exposed to view and indicating the location of all cut CMU products shall be submitted for approval. Bent bars shall be identified on a bending diagram and shall be referenced and located on the drawings. Wall dimensions, bar clearances, and wall openings greater than one masonry unit in area shall be shown. No approval will be given to the shop drawings until the Contractor certifies that all openings, including those for mechanical and electrical service, are shown. If, during construction, additional masonry openings are required, the approved shop drawings shall be resubmitted with the additional openings shown along with the proposed changes. Location of these additional openings shall be clearly highlighted. The minimum scale for wall elevations shall be 1 to 50 1/4 inch per foot. Reinforcement bending details shall conform to the requirements of ACI SP-66. Submit drawings including plans, elevations, and details of wall reinforcement; details of reinforcing bars at corners and wall intersections; offsets; tops, bottoms, and ends of walls; control and expansion joints; lintels; and wall openings.

1.5 DELIVERY, STORAGE, AND HANDLING

Materials shall be delivered, stored, handled, and protected to avoid chipping, breakage, and contact with soil or contaminating material. Store and prepare materials in already disturbed areas to minimize project site disturbance and size of project site.

1.5.1 Masonry Units

Cover and protect moisture-controlled concrete masonry units and cementitious materials from precipitation. Conform to all handling and storage requirements of ASTM C90. Mark prefabricated lintels on top sides to show either the lintel schedule number or the number and size of top and bottom bars.
1.5.2 Reinforcement, Anchors, and Ties

Steel reinforcing bars, coated anchors, ties, and joint reinforcement shall be stored above the ground. Steel reinforcing bars and uncoated ties shall be free of loose mill scale and rust.

1.5.3 Cementitious Materials, Sand and Aggregates

Cementitious and other packaged materials shall be delivered in unopened containers, plainly marked and labeled with manufacturers' names and brands. Cementitious material shall be stored in dry, weathertight enclosures or be completely covered. Cement shall be handled in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Store sand and aggregates in a manner to prevent contamination or segregation.

1.6 PROJECT/SITE CONDITIONS

Conform to ACI 530/530.1 for hot and cold weather masonry erection.

1.6.1 Hot Weather Installation

Take the following precautions if masonry is erected when the ambient air temperature is more than 37 degrees C 99 degrees F in the shade and the relative humidity is less than 50 percent or the ambient air temperature exceeds 32 degrees C 90 degrees F and the wind velocity is more than 13 km/h 8 mph. All masonry materials shall be shaded from direct sunlight; mortar beds shall be spread no more than 1.2 m 4 feet ahead of masonry; masonry units shall be set within one minute of spreading mortar; and after erection, masonry shall be protected from direct exposure to wind and sun for 48 hours.

1.6.2 Cold Weather Installation

Before erecting masonry when ambient temperature or mean daily air temperature falls below 4 degrees C 40 degrees F or temperature of masonry units is below 4 degrees C 40 degrees F, submit a written statement of proposed cold weather construction procedures for approval. Take the additional following precautions if masonry is erected in cold weather: [_____]

PART 2 PRODUCTS

2.1 GENERAL REQUIREMENTS

The source of materials which will affect the appearance of the finished work shall not be changed after the work has started except with Contracting Officer's approval. Submit sample of colored mortar with applicable masonry unit and color samples of three stretcher units and one unit for each type of special shape. Units shall show the full range of color and texture. Submit test reports from an approved independent laboratory. Test reports on a previously tested material shall be certified as the same as that proposed for use in this project. Submit certificates of compliance stating that the materials meet the specified requirements.
2.2 CLAY OR SHALE BRICK

**

NOTE: The manufacturer’s name and color number or color range will be indicated on the drawings along with the following note: "Colors or color ranges indicated are for identification purposes only and are not intended to limit selection of similar color or color range from other manufacturers."

Grade SW brick provides a high degree of resistance to frost action and deterioration by weathering. Grade MW brick provides a moderate degree of resistance. Brick facings may be limited to Grade SW units where previous experience indicates that surfaces of Grade MW facings, 10 years of age in the project area, have deteriorated due to weathering.

Types FBS and HBS brick are for general use where normal size variation and color range is acceptable. Types FBX and HBX permit less variation. Types FBA and HBA permit large variations for special architectural effect.

Bricks of various modular sizes are available and, if for architectural reasons, other size bricks are included in the design, the nominal size selected shall be specified as necessary. If larger units, such as utility brick are required, change the specified dimensions. If nominal dimensions are used, they should be so noted.

Use of materials with recycled content, calculated on the basis of post-industrial and post-consumer percentage content, contributes to the following LEED credit: MR4. Coordinate with Section 01 33 29 SUSTAINABILITY REPORTING. Designer must verify that products meeting the indicated minimum recycled content are available, preferably from at least three sources, to ensure adequate competition. If not, write in suitable recycled content values that reflect availability and competition. Use second option if Contractor is choosing recycled content products in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

**

Submit brick samples as specified. Color range and texture of clay or shale brick shall be as indicated and shall conform to the approved sample. Brick shall conform to ASTM C62; Grade SW shall be used for brick in contact with earth or grade and for [the first six exterior courses above grade] [all exterior work] and for all nonvertical surfaces. Grade SW or MW shall be used in other brickwork. Average dimensions of brick shall be 90 mm thick, 57 mm high, and 190 mm long (standard) 3-5/8 inches thick, 2-1/4 inches high, and 8 inches long (standard) or 4 inches thick, 2-2/3 inches high, and 8 inches long (nominal), subject to the tolerances specified in ASTM C62. Brick shall be tested for efflorescence. Clay or shale brick units shall be delivered factory-blended to provide a uniform appearance and color range in the completed wall. [Clay units shall
contain a minimum of [5] [10] [_____] percent post-consumer recycled content, or a minimum of [20] [40] [_____] percent post-industrial recycled content. [See Section 01 33 29 SUSTAINABILITY REPORTING for cumulative total recycled content requirements. Clay units may contain post-consumer or post-industrial recycled content.]

2.2.1 Solid Clay or Shale Brick

**

NOTE: ASTM C216 may be deleted for projects located where brick conforming to ASTM C62 provides aesthetic appearance that does not detract from the design, is generally available and predominantly used in the area, and the specific brick will blend with existing or adjacent architecture.

Specify facing brick only where aesthetic value is a prime consideration or to match existing construction. See ASTM C216 for conditions under which Grade MW may be allowed.

If larger units, such as utility brick, are required, change the specified dimensions. If nominal dimensions are used, they should be so noted. Consider the use of closure or utility brick when it is architecturally acceptable, though not solid, at least as a Contractor's option. The cost per square foot of wall is about 15 percent less for closure brick, 20 percent less for utility brick, than for standard brick. Use paragraph titled "Closure or Utility Brick" below.

**

Solid clay or shale brick shall conform to [ASTM C62] [ASTM C216, Type [FBS] [FBA] [FBX]]. Brick size shall be modular and the nominal size of the brick used shall be 92 mm 3-5/8 inches thick, 57 mm 2-1/4 inches high, and 200 mm 8 inches long (nominal) or 100 mm thick, 68 mm high and 200 mm long (nominal) 4 inches thick, 2-2/3 inches high and 8 inches long (nominal). Minimum compressive strength of the brick shall be [_____] MPa psi.

2.2.2 Hollow Clay or Shale Brick

**

NOTE: For exposed exterior and interior masonry, HBX has narrow color variation and high degree of mechanical perfection. Use HBS where greater variation is allowed. For architectural effects resulting from nonuniformity in size, color, and texture, use HBA. Use HBB where color and texture are not a consideration and a greater variation in size is permitted.

**

Hollow clay or shale brick shall conform to ASTM C652, Type [HBS] [HBX] [HBA] [HBB]. Brick size shall be modular and the nominal size of the brick used shall be [_____] mm inches thick, [_____] mm inches high, and [_____] mm inches long. Where vertical reinforcement is shown in hollow brick, the minimum cell dimension shall be 64 mm 2-1/2 inches and the units shall be designed to provide precise vertical alignment of the cells. Minimum
compressive strength of the brick shall be [_____] MPa psi.

2.2.3 Sand-Lime Brick

**
NOTE: Where all sand-lime brick is interior, Grade MW may be specified as an option to Grade SW.
**

ASTM C73, Grade SW, approximately 92 mm thick, 57 mm high, 200 mm long (nominal) 3 5/8 inches thick, 2 1/4 inches high, and 8 inches long (nominal) or nominal modular, with smooth surfaces and natural color.

2.2.4 Refractory Brick

ASTM C27, low-duty type, [_____] mm inches thick, [_____] mm inches high, and [_____] mm inches long.

2.2.5 Closure or Utility Brick

ASTM C216, Grade SW, Type FBS, [92 mm thick, 92 mm high, and 200 mm long (closure) 3 5/8 inches thick, 3 5/8 inches high, and 8 inches long (closure)] [or] [nominally 100 mm thick, 100 mm high, and 305 mm long (utility) 4 inches thick, 4 inches high, and 12 inches long (utility)]. [Closure] [or] [Utility] brick may be used at the option of the Contractor, provided that changes necessitated by the use of such brick shall be the responsibility of the Contractor. Color, texture, and range of brick shall match the brick [on display at [_____] [indicated].

2.2.6 Adobe Brick

**
NOTE: Adobe shall meet accepted industry standards at a minimum. Determine standards for reliable products and include in this paragraph.
**

[_____] mm inches thick, [_____] mm inches high, and [_____] mm inches long.

2.2.6.1 Traditional Adobe

Protect traditional adobe from water penetration by the application of adobe mud plaster, lime plaster, cement- or lime-cement stucco and wide roof overhangs.

2.2.6.2 Semi-Stabilized Adobe

Semi-stabilized adobe shall contain 3 percent asphalt emulsion or portland cement by weight, or as prescribed by local soil conditions and codes. Protect from water penetration by the application of adobe mud plaster, lime plaster, cement- or lime-cement stucco and wide eaves.

2.2.6.3 Fully Stabilized Adobe

Fully stabilized adobe shall contain 5 percent asphalt emulsion or portland cement by weight, or as prescribed by local soil conditions and codes.
2.3 CONCRETE BRICK

**

NOTE: Grade N is used for high strength and resistance to moisture penetration. Grade S is used for lesser strength and moisture resistance. Grade N units are for general use and may be exposed to weather. Split face brick (solid concrete facing units), where required by design, should be added to this paragraph. A particular color and texture may be specified when locally available and competitively priced. Sizes may be specified for brick or split face brick where required by the design.

**

Concrete brick shall conform to ASTM C55, Grade [N] [S]. Concrete brick may be used where necessary for filling out in concrete masonry unit construction. Submit samples as specified.

2.4 SALVAGED BRICK

**

NOTE: Use of salvaged/recovered materials contributes to the following LEED credit: MR3. Include submittal if pursuing this LEED credit, and coordinate with Section 01 33 29 SUSTAINABILITY REPORTING.

Include bracketed wording if bricks will be in structures used for children or residences. Indicate on drawings locations where salvaged brick is acceptable.

**

Use [lead-free] salvaged bricks and other masonry units in place of new bricks or masonry units as indicated. [Bricks salvaged from foundries or industrial buildings shall be washed with appropriate metal-dust removing cleaner.] When using salvaged brick, select exterior face bricks from salvaged exterior face bricks. Bricks shall meet standards of new bricks otherwise used in application, and shall be cleaned of all mortar prior to use. Place exterior face towards the exterior. Submit documentation certifying products are from salvaged/recovered sources. Indicate relative dollar value of salvaged content products to total dollar value of products included in project.

2.5 CONCRETE MASONRY UNITS (CMU)

**

NOTE: Three weight classifications are included in ASTM C90. It is important that the weight classification desired be designated. If structural design requires an f’m greater than 10 MPa (1500 psi), or if the requirement in subpart d. of paragraph entitled "Prism Tests," is specified greater than 10 MPa (1500 psi) that must be indicated here by adding an exception which states the f’m.
Low alkali cement should be specified for use in CMU if efflorescence caused by the use of available cement is a problem. If efflorescence is not a problem edit last sentence.

A lightweight high performance CMU has been developed by USACERL. This unit provides equivalent performance to a standard normal weight CMU, yet weighs only 8.5 kg (19 pounds). This CMU does not meet a strict interpretation of the ASTM C90 requirements and may require a variance from local building officials. Contact USACERL for supporting technical information.

Specify lightweight aggregate where required for structural or "U" value purposes. Coordinate with structural and mechanical designers. Specify only normal weight aggregate for single-wythe, ungrouted, exterior walls. For NAVFAC PAC projects, that conform to ASTM C55, specify Brick. Otherwise, light or normal weight aggregate should be optional with the Contractor, including single wythe, grouted walls.

For single-wythe, concrete masonry unit exterior walls, specify water-repellent admixture for both the masonry units and the mortar. This is a regional requirement which shall be used, when applicable, for NAVFAC SE projects; when appropriate, the requirements may be used for projects in other areas. Use only with ASTM C744 masonry units.

Designer must verify that products meeting the indicated minimum recycled content are available, preferably from at least three sources, to ensure adequate competition. If not, write in suitable recycled content values that reflect availability and competition. Use second option if Contractor is choosing recycled content products in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

**

Submit samples and certificates as specified. Cement shall have a low alkali content and be of one brand. [Units shall contain a minimum of [5] [10] [_____] percent post-consumer recycled content, or a minimum of [20] [40] [_____] percent post-industrial recycled content.][See Section 01 33 29 SUSTAINABILITY REPORTING for cumulative total recycled content requirements. Units may contain post-consumer or post-industrial recycled content.] Units shall be of modular dimensions and air, water, or steam cured. [Surfaces of units which are to be plastered or stuccoed shall be sufficiently rough to provide bond]; [elsewhere,] [exposed surfaces of units shall be smooth and of uniform texture]. [Exterior concrete masonry units shall have water-repellant admixture added during manufacture.]

a. Hollow Load-Bearing Units: ASTM C90, made with lightweight [or medium weight] [or normal weight] aggregate. Provide load-bearing units for exterior walls, foundation walls, load-bearing walls, and shear walls.

SECTION 04 20 00 Page 23
b. Hollow Non-Load-Bearing Units: ASTM C129, made with lightweight [or medium weight] [or normal weight] aggregate. Load-bearing units may be provided in lieu of non-load-bearing units.

c. Solid Load-Bearing Units: ASTM C90, lightweight [or medium weight] [or normal weight] units. Provide solid units [for masonry bearing under structural framing members] [as indicated].

2.5.1 Aggregates

**
NOTE: Where sufficient evidence based on previous construction experience indicates concrete masonry units manufactured from aggregate from a specific source may be subject to excessive popouts and/or staining, contract specifications may be written to exclude such aggregate.
**

Lightweight aggregates and blends of lightweight and heavier aggregates in proportions used in producing the units, shall comply with the following requirements when tested for stain-producing iron compounds in accordance with ASTM C641: by visual classification method, the iron stain deposited on the filter paper shall not exceed the "light stain" classification.

Use industrial waste by-products (air-cooled slag, cinders, or bottom ash), ground waste glass and concrete, granulated slag, and expanded slag in aggregates. Slag shall comply with ASTM C989/C989M; Grade [80] [100] [120].

2.5.2 Kinds and Shapes

**
NOTE: Bullnose units will be specified only in cases where sharp corners are considered objectionable, such as in heavy traffic areas. If bullnose units are specified, the locations of use will be detailed on the drawings and/or listed in this paragraph.
**

Units shall be modular in size and shall include closer, jamb, header, lintel, and bond beam units and special shapes and sizes to complete the work as indicated. In exposed interior masonry surfaces, units having a bullnose shall be used for vertical external corners except at door, window, and louver jambs. Radius of the bullnose shall be 25 mm 1 inch. Units used in exposed masonry surfaces in any one building shall have a uniform fine to medium texture and a uniform color.

2.5.2.1 Architectural Units

**
NOTE: Where architectural units are used, local sources should be checked to determine available shapes, sizes, patterns, and colors. Desired unit pattern should be clearly shown on the drawings. Delete integral coloring if units will be painted or if natural color is satisfactory. CMU veneer wythes should be solid units to minimize trapping water which could lead to damage from freezing, mildew, and efflorescence.
**
Units shall have patterned face shell. Face shell pattern shall be [fluted] [vertical scored] [split ribbed] [____]. Units shall be integrally colored during manufacture. Color shall be [____]. Patterned face shell shall be properly aligned in the completed wall.

2.5.2.2 Patterned, Decorative Screen Units

NOTE: Manufacturer's catalogs will be consulted for patterned units locally available. Optional designs of patterned units will be shown as necessary for competitive bidding.

Concrete masonry units conforming to applicable requirements of ASTM C129 are suitable for interior nonload-bearing screens, and may be specified where required.

Patterned, decorative screen units shall conform to the applicable requirements of [ASTM C90] [ASTM C129]. Units shall have uniform through-the-wall pattern, color, and texture.

2.5.3 Fire-Rated CMU

NOTE: The thickness of fire-rated walls as well as the required fire rating will be indicated on the drawings. Such walls will be shown as continuous from floor to deck above. Sections and details of these walls will clearly indicate the extent of such walls. Solid grouted concrete and concrete brick masonry 150 mm (6 inches) or greater in thickness will be considered a 4-hour fire-rated wall regardless of aggregate type.

Concrete masonry units used in fire-rated construction shown on the drawings shall be of minimum equivalent thickness for the fire rating indicated and the corresponding type of aggregates indicated in TABLE I. Units containing more than one of the aggregates listed in TABLE I will be rated on the aggregate requiring the greater minimum equivalent thickness to produce the required fire rating. Construction shall conform to ASTM E119.

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>Minimum equivalent thickness in mm inches for fire rating of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hours 3 hours 2 hours</td>
</tr>
</tbody>
</table>

TABLE I

FIRE-RATED CONCRETE MASONRY UNITS

See note (a) in Table III
TABLE I
FIRE-RATED CONCRETE MASONRY UNITS
See note (a) in Table III

<table>
<thead>
<tr>
<th>Material</th>
<th>Minimum</th>
<th>Equivalent</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumice</td>
<td>1204.7</td>
<td>1004.0</td>
<td>753.0</td>
</tr>
<tr>
<td>Expanded slag</td>
<td>1305.0</td>
<td>1104.2</td>
<td>853.3</td>
</tr>
<tr>
<td>Expanded clay, shale, or slate</td>
<td>1455.7</td>
<td>1204.8</td>
<td>953.7</td>
</tr>
<tr>
<td>Limestone, scoria, cinders or unexpanded slag</td>
<td>1505.9</td>
<td>1305.0</td>
<td>1004.0</td>
</tr>
<tr>
<td>Calcareous gravel</td>
<td>1606.2</td>
<td>1355.3</td>
<td>1054.2</td>
</tr>
<tr>
<td>Siliceous gravel</td>
<td>1706.7</td>
<td>1455.7</td>
<td>1154.5</td>
</tr>
</tbody>
</table>

Minimum equivalent thickness shall equal net volume as determined in conformance with ASTM C140/C140M divided by the product of the actual length and height of the face shell of the unit in mm inches. Where walls are to receive plaster or be faced with brick, or otherwise form an assembly; the thickness of plaster or brick or other material in the assembly will be included in determining the equivalent thickness. Submit calculation results.

2.6 COMpressed Earth Block

NOTE: Compressed earth block is made by pressing damp adobe earth into steel molds using a high-pressure, hand-operated or hydraulic press.

Compressed earth block shall meet accepted industry standards at a minimum. Determine standards for reliable products and include in this paragraph.

Earth may be stabilized by adding 2 to 5 percent portland cement by weight for semi-stabilized block, and 5 to 10 percent for fully stabilized block; use of other stabilizing admixtures, and their proportions, shall be prescribed by local soil conditions and codes. [250][_____] mm [10][_____] inches thick, [100][_____] mm [4][_____] inches high, and [356][_____] mm [14][_____] inches long, 17 to 19 kg 38 to 40 pounds, using an average of 7,585 kPa 1,100 psi for unstabilized and 20,685 kPa 3,000 psi for stabilized.

2.7 PRECAST CONCRETE ITEMS

Trim, lintels, copings, splashblocks and door sills shall be factory-made units from a plant regularly engaged in producing precast concrete units. Unless otherwise indicated, concrete shall be [28] [20] MPa [4,000] [3000] psi minimum conforming to Section [03 30 00.00 10 CAST-IN-PLACE CONCRETE] [03 30 00 CAST-IN-PLACE CONCRETE] using 13 mm 1/2 inch to No. 4 nominal-size coarse aggregate, and minimum reinforcement shall be the reinforcement required for handling of the units. Clearance of 19 mm 3/4 inch shall be maintained between reinforcement and faces of units. Unless
precast-concrete items have been subjected during manufacture to saturated-steam pressure of at least 827 kPa 120 psi for at least 5 hours, the items, after casting, shall be either damp-cured for 24 hours or steam-cured and shall then be aged under cover for 28 days or longer. Cast-concrete members weighing over 35 kg 80 pounds shall have built-in loops of galvanized wire or other approved provisions for lifting and anchoring. Units shall have beds and joints at right angles to the face, with sharp true arises and shall be cast with drip grooves on the underside where units overhang walls. Exposed-to-view surfaces shall be free of surface voids, spalls, cracks, and chipped or broken edges. Precast units exposed-to-view shall be of uniform appearance and color. Unless otherwise specified, units shall have a smooth dense finish. Prior to use, each item shall be wetted and inspected for crazing. Items showing evidence of dusting, spalling, crazing, or having surfaces treated with a protective coating will be rejected. Submit specified factory certificates.

2.7.1 Lintels

**
NOTE: Insert strength of concrete; precast lintels usually range from 17 to 25 MPa (2500 to 3500 psi).
**

Precast lintels, unless otherwise shown, shall be of a thickness equal to the wall and reinforced with two No. 4 bars for the full length. Top of lintels shall be labeled "TOP" or otherwise identified and each lintel shall be clearly marked to show location in the structure. In reinforced masonry, lintels shall conform to ACI 318M ACI 318 for flexural and shear strength and shall have at least 200 mm 8 inches bearing at each end. Concrete shall have a minimum 28 day compressive strength of [_____] MPa psi using 13 mm 1/2 inch to No. 4 nominal-size coarse aggregate. Reinforcement shall conform to ASTM A615/A615M Grade 400 MPa 60,000 psi. Limit lintel deflection due to dead plus live load to L/600 or 7 mm 0.3 inches. Provide top and bottom bars for lintels over 900 mm 36 inches in length.

2.7.2 Sills and Copings

Sills and copings shall be cast with washes. Sills for windows having Mullions shall be cast in sections with head joints at mullions and a 6 mm 1/4 inch allowance for mortar joints. The ends of sills, except a 19 mm 3/4 inch wide margin at exposed surfaces, shall be roughened for bond. Treads of door sills shall have rounded nosings. [Reinforce sills with not less than two No. 15 No. 4 bars.]

2.7.3 Splash Blocks

Splash blocks shall be as detailed. Reinforcement shall be the manufacturer's standard.

2.7.4 Flue Linings and Thimbles

ASTM C315, free from fractures. Sizes and shapes shall be as indicated.

2.8 STONE ITEMS

**
NOTE: The stone specified herein is for structures requiring a limited quantity of cut stone. Where
previous experience indicates difficulty in
obtaining precast concrete trim of the specified
quality, stone may be specified as a Contractor's
option.

Submit samples as specified. Stone for trim, sills, lintels, and copings
shall be limestone, sandstone, or granite, and shall be cut to the design
shown. Sandstone shall be standard grade, buff, gray, or buff brown, with
a smooth finish free from clay pits and tool marks. Granite shall be a
good commercial grade building granite of medium or moderately coarse
grain, and a light or medium gray or light pink color, with a smooth
machine finish on washes, 4-cut finish on treads, and 6-cut or equivalent
machine finish on other exposed surfaces. Limestone shall be standard buff
limestone with a smooth machine finish free from tool marks. Lintels,
except when supported by a steel member, shall be 100 mm 4 inches or more
thick from face to back edge and of the depth required to support the
masonry over the opening. Stone shall have beds and joints at right angles
to the face, with sharp, true arises. Copings and sills shall be provided
with washes, and where overhanging the walls, shall have drips cut on the
underside.

2.9 MORTAR FOR STRUCTURAL MASONRY

NOTE: The defaults for mortar and grout materials
in ASTM C270 and ASTM C476 are all right for general
construction. Specify Type III portland cement for
cold weather construction, Type II for moderate
sulfate resistance. The blended cements make a gray
mortar; specify portland cement mortar or masonry
cement if white or colored mortar is necessary. Use
only Type S for exterior walls and M below ground.
Do not use Type O in areas of moderate or high
seismic activity. Do not use Type N in areas of
high seismic activity.

A, added to Type designation, i.e. IIA, means
air-entrained. Use this for exterior mortar in
severe climates, but do not use for grout.

<table>
<thead>
<tr>
<th>Mortar</th>
<th>Type</th>
<th>Average Compressive Strength at 28 Days Min. MPa (psi)</th>
<th>Water Retention Min. Percent</th>
<th>Air Content Max. Percent</th>
<th>Aggregate Ratio (Measured in Damp, Loose Condition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement-Lime</td>
<td>M</td>
<td>17 (2500)</td>
<td>75</td>
<td>12</td>
<td>Not less than 2-1/4 and not more than 3-1/2 times the sum of</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>12 (1800)</td>
<td>75</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>5 (750)</td>
<td>75</td>
<td>14*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>2 (350)</td>
<td>75</td>
<td>14*</td>
<td></td>
</tr>
</tbody>
</table>
ASTM C270 TABLE 2 Property Specification Requirements (For laboratory prepared mortar only)

<table>
<thead>
<tr>
<th>Masonry cement</th>
<th>M</th>
<th>S</th>
<th>N</th>
<th>O</th>
<th>17 (2500)</th>
<th>12 (1800)</th>
<th>5 (750)</th>
<th>2 (350)</th>
<th>75</th>
<th>75</th>
<th>75</th>
<th>75</th>
<th>Separate volumes of cementitious materials</th>
</tr>
</thead>
</table>

* When structural reinforcement is incorporated in cement-lime mortar, the maximum air content shall be 12 percent.

** When structural reinforcement is incorporated in masonry cement mortar, the maximum air content shall be 18 percent.

Type N should be used only for non-load-bearing walls. Approximate the f'm of the unit masonry. Mortars should be slightly weaker than masonry units so that cracking will occur in joints where easy to repair.

**

ASTM C270, Type [M] [N] [S]. Strength (f'm) as indicated. Test in accordance with ASTM C780. [Use Type [I] [II] [III] portland cement.] [Use Type [IS] [IP] [I(PM)] blended hydraulic cement.] [Use Masonry cement.] Do not use admixtures containing chlorides. When structural reinforcement is incorporated, maximum air-content shall be 12 percent in cement-lime mortar and 18 percent in masonry cement mortar. Use up to 40 percent Class F fly ash with type IP cement in cement-lime mortar. Fly ash shall comply with ASTM C593.

2.10 MASONRY MORTAR

**

NOTE: See ASTM C270 for guidance in selecting mortar types. Use Type M when masonry is in contact with earth and high degree of compressive strength is required.

Type S should be used for reinforced masonry and when high degree of compressive strength or high degree of lateral load resistance is required. Type S mortar provides workability, weather tightness, durability and corrosion protection, and will be used for most work. For cavity wall construction, a high degree of lateral load is defined as an 130 km/h (80 mph) wind.

Type N mortar generally provides improved workability and weather tightness; it has lower strength, durability and corrosion protection than Type S. It should be used for all general interior and exterior above grade masonry construction including chimneys and parapets unless higher compressive strength or a high degree of lateral load resistance is required. For NAVFAC SE projects, use only Type S mortar for exterior walls except use Type M mortar when masonry is in contact with earth.

The proportions allowed by ASTM C270 for cement-lime mortars can result in properties that are...
essentially of another mortar type. Mortars proportioned for high strength can lead to debonding between the mortar joint and the brick resulting in reduced wall flexural capacity and increased water penetration leading to efflorescence problems. Therefore the proportions for cement-lime Types S and N mortars will be as shown below.

Mortar coloring may be specified as required by architectural design.

Low alkali cement should be specified for use in mortar if efflorescence caused by the use of available cement is a problem.

Type M mortar shall conform to ASTM C270 and shall be used for foundation walls [, basement walls,] [and piers]. Mortar Type [S] [N] shall conform to the proportion specification of ASTM C270 except Type S cement-lime mortar proportions shall be 1 part cement, 1/2 part lime and 4-1/2 parts aggregate; Type N cement-lime mortar proportions shall be 1 part cement, 1 part lime and 6 parts aggregate. Type N or S mortar shall be used for non-load-bearing, non-shear-wall interior masonry; [approved commercial fire clay mortar or refractory cement (calcium-aluminate) mortar for fire brick and flue liners;] and Type S for remaining masonry work; except where higher compressive strength is indicated on structural drawings. When masonry cement ASTM C91/C91M is used the maximum air content shall be limited to 12 percent and performance equal to cement-lime mortar shall be verified. Verification of masonry cement performance shall be based on ASTM C780 and ASTM C1072. Pointing mortar in showers and kitchens shall contain ammonium stearate, or aluminum tri-stearate, or calcium stearate in an amount equal to 3 percent by weight of cement used. Cement shall have a low alkali content and be of one brand. Aggregates shall be from one source.

2.10.1 Admixtures for Masonry Mortar

NOTE: Admixtures may cause efflorescence and may adversely affect the strength of the mix or the protection of embedded steel items.

In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C494/C494M, Type C. Submit the required certifications.

2.10.2 Colored Mortar

NOTE: Indicate on the drawings locations of colored mortar.

Mortar coloring shall be added to the mortar used for exposed masonry surfaces to produce a uniform color matching [______]. Quantity of pigment to cementitious content of the masonry cement shall not exceed [5][______] by weight; carbon black shall not exceed [1][______] percent by weight.
Quantity of pigment to cementitious content of cement-lime mix shall not exceed [10][_____] percent by weight, carbon black no more than [2][_____] percent by weight. Mortar coloring shall be chemically inert, of finely ground limeproof pigment, and furnished in accurately pre-measured and packaged units that can be added to a measured amount of cement. Compressive strength of colored mortar shall equal [____].

2.10.3 Hydrated Lime and Alternates

**
NOTE: Lime alternates can increase spreadability.
**

Hydrated lime shall conform to ASTM C207, Type [S][SA].

2.10.4 Cement

**
NOTE: Coal fly ash, slag, cenospheres, and silica fumes are EPA designated products to be ingredients in cement. See Section 01 33 29 SUSTAINABILITY REPORTING and include additive options unless designer determines that justification for non-use exists.
**

Portland cement shall conform to ASTM C150/C150M, Type I,[IA,] II,[IIA,] or III[, IIIA]. Masonry cement shall conform to ASTM C91/C91M, Type [N][S][M]. Containers shall bear complete instructions for proportioning and mixing to obtain the required types of mortar. Incorporate to the maximum extent, without conflicting with other requirements of this section, up to 40 percent fly ash, up to 70 percent slag, up to 10 percent cenospheres, and up to 10 percent silica fume. When masonry cement is used, submit the manufacturer's printed instructions on proportions of water and aggregates and on mixing to obtain the type of mortar required. Additives shall conform to requirements in Section [03 30 00 CAST-IN-PLACE CONCRETE] [03 30 00.00 10 CAST-IN-PLACE CONCRETE].

2.10.5 Pre-Mixed Mortar

Pre-mixed mortar shall conform to ASTM C1142, Type [RN] [RS] [RM]. Submit pre-mixed mortar composition.

2.10.6 Sand and Water

Sand shall conform to ASTM C144. Water shall be clean, potable, and free from substances which could adversely affect the mortar.

2.11 WATER-REPELLANT ADMIXTURE

**
NOTE: For single-wythe, concrete masonry unit exterior walls, specify water-repellant admixture for both the masonry units and the mortar. Use only with ASTM C744 masonry units. Include the bracketed phrase when water penetration testing of the exterior masonry wall assembly is required. Require testing only for single-wythe wall constructions that do not have a waterproofing skin applied and
where wall water penetration will impair
mission-critical operations, create an immediate
safety hazard, or have a detrimental impact on
interior finishes.

Polymeric type formulated to reduce porosity and water penetration and
water absorption of the mortar and masonry units required to provide for
the exterior single-wythe masonry wall water penetration resistance
indicated in Paragraph SINGLE-WYTHE MASONRY WALL WATER PENETRATION TEST].

2.12 GROUT AND READY-MIXED GROUT

NOTE: Low alkali cement should be specified for use
in grout if efflorescence caused by the use of
available cement is a problem.

For structural masonry, the following applies. The
defaults for mortar and grout materials in ASTM C270
and ASTM C476 are all right for general
construction. Specify Type III portland cement for
cold weather construction, Type II for moderate
sulfate resistance. The blended cements make a gray
mortar; specify portland cement mortar or masonry
cement if white or colored mortar is necessary. Use
only Type S for exterior walls and M below ground.
Do not use Type O in areas of moderate or high
seismic activity. Do not use Type N in areas of
high seismic activity.

Choice of fine or coarse grout depends on width of
grouting space and pour height; a table with this
information is in ACI 530/530.1.

Grout shall conform to ASTM C476, [fine] [coarse]. Cement used in grout
shall have a low alkali content. Grout slump shall be between 200 and
[250] [280] mm 8 and [10] [11] inches. Minimum grout strength shall be 14
MPa 2000 psi in 28 days, as tested by ASTM C1019. Use grout subject to the
limitations of Table III. Do not change proportions and do not use
materials with different physical or chemical characteristics in grout for
the work unless additional evidence is furnished that the grout meets the
specified requirements. Ready-Mixed grout shall conform to ASTM C94/C94M.

2.12.1 Admixtures for Grout

NOTE: Admixtures, including air entrainment, may
cause efflorescence and may adversely affect the
strength of the mix or the protection of embedded
steel items.

A grouting-aid admixture may be desirable when
concrete masonry and clay brick units are highly
absorbent to reduce early water loss, promote
bonding, and produce slight expansion to help ensure
complete filling of cavities.
In cold weather, a non-chloride based accelerating admixture may be used subject to approval; accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C494/C494M, Type C. In general, air-entrainment, anti-freeze or chloride admixtures shall not be used except as approved by the Contracting Officer. Submit required certifications.

2.12.2 Grout Barriers

Grout barriers for vertical cores shall consist of fine mesh wire, fiberglass, or expanded metal.

2.13 ANCHORS, TIES, AND BAR POSITIONERS

**

NOTE: By definition, ties are connections between masonry elements, anchors connect masonry to the structure, and fasteners are for attachments to masonry. The anchors and ties specified in this paragraph are primarily used to laterally tie masonry veneer to backup elements. Anchors and ties not incorporated in the design will be deleted. If special anchors or ties are required by the design, they will be specified to meet the necessary requirements.

Wire ties, centering devices, and joint reinforcement are available with three weights of zinc coating and are recommended for the following types of exposure:

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Finish</th>
<th>Wt. of Coating in Gram Per Sq. Meter (Oz. Per Sq. Foot) for 9 ga wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint reinforcement, interior walls</td>
<td>ASTM A641/A641M Class 1</td>
<td>100 (.35)</td>
</tr>
<tr>
<td>Wire ties or anchors in exterior, completely embedded in mortar or grout</td>
<td>ASTM A641/A641M Class 3</td>
<td>270 (.90)</td>
</tr>
<tr>
<td>Wire ties or anchors in exterior walls not completely embedded in mortar or grout</td>
<td>ASTM A153/A153M Class B</td>
<td>540 (1.80)</td>
</tr>
</tbody>
</table>
Anchors and ties shall be fabricated without drips or crimps and shall be zinc-coated in accordance with ASTM A153/A153M, Class B-2. Steel wire used for anchors and ties shall be fabricated from steel wire conforming to ASTM A1064/A1064M. Wire ties or anchors in exterior walls shall conform to ASTM A641/A641M. Joint reinforcement in interior walls, and in exterior or interior walls exposed to moist environments shall conform to ASTM A641/A641M; coordinate with paragraph JOINT REINFORCEMENT below. Anchors and ties shall be sized to provide a minimum of 16 mm 5/8 inch mortar cover from either face. Submit two anchors, ties and bar positioners of each type used, as samples.

2.13.1 Wire Mesh Ties

NOTE: Wire mesh ties will only be used to tie 100 mm (4 inch) thick concrete masonry unit partitions to other intersecting masonry partition walls.

Wire mesh for tying 100 mm 4 inch thick concrete masonry unit partitions to other intersecting masonry partitions shall be 13 mm 1/2 inch mesh of minimum 16 gauge 16 gauge steel wire. Minimum lengths shall be not less than 300 mm 12 inches.

2.13.2 Wall Ties

NOTE: Wall ties will be specified to provide an option to the typically used continuous joint
reinforcement to anchor the outer wythe to the inner wythe of anchored veneer construction. Vertical spacing will normally be 400 mm (16 inches) on center and horizontal spacing of the unit ties will normally be 600 mm (24 inches) on center.

For NAVFAC SE projects, add to text: "Provide anchors and ties for cavity walls with integral drip located in the cavity." Do not use corrugated metal ties in cavity walls; they are very thin and prone to corrosion. These ties are generally used in residential construction.

Z-shaped ties should only be specified when bonding walls constructed with solid units (not less than 75 percent of the gross cross-sectional area being solid). Rectangular ties may be used with either solid or hollow units.

Adjustable wall ties may be used in areas of low seismic activity when the design wind speed is less than 160 km/hr (100 mph); designer must follow the guidance provided in UFC 3-310-04 SEISMIC DESIGN FOR BUILDINGS for any seismic design. Adjustable wall ties are normally used when constructing one wythe independent of the other. The preferred method of construction, however, is to bring the wythes up together. Delete the sentences pertaining to adjustable ties when they are not permitted.

**

Provide wall ties rectangular-shaped or Z-shaped fabricated of 5 mm 3/16 inch diameter zinc-coated steel wire. Rectangular wall ties shall be no less than 100 mm 4 inches wide. Wall ties may also be of a continuous type conforming to paragraph JOINT REINFORCEMENT. Adjustable type wall ties, if approved for use, shall consist of two essentially U-shaped elements fabricated of 5 mm 3/16 inch diameter zinc-coated steel wire. Adjustable ties shall be of the double pintle to eye type and shall allow a maximum of 13 mm 1/2 inch eccentricity between each element of the tie. Play between pintle and eye opening shall be not more than 2 mm 1/16 inch. The pintle and eye elements shall be formed so that both can be in the same plane.

2.13.3 Dovetail Anchors

Provide dovetail anchors of the flexible wire type, 5 mm 3/16 inch diameter zinc-coated steel wire, triangular shaped, and attached to a 12 gauge 12 gauge or heavier steel dovetail section. Use these anchors for anchorage of veneer wythes or composite-wall facings extending over the face of concrete columns, beams, or walls. Fill cells within vertical planes of these anchors solid with grout for full height of walls or partitions, or solid units may be used. Dovetail slots are specified in Section [03 30 00.00 10 CAST-IN-PLACE CONCRETE][03 30 00 CAST-IN-PLACE CONCRETE].

2.13.4 Adjustable Anchors

**

NOTE: Adjustable anchors will be used to anchor masonry to structural steel columns or beams. The fixed portion of the anchors (steel anchor rods)
will be welded to the structural steel member. In instances where standard anchors are not available, such as when anchoring masonry to a steel beam that is offset from the masonry wall line, anchors will be detailed on the drawings.

Adjustable anchors shall be 5 mm 3/16 inch diameter steel wire, triangular-shaped. Anchors attached to steel shall be 8 mm 5/16 inch diameter steel bars placed to provide 2 mm 1/16 inch play between flexible anchors and structural steel members. Spacers shall be welded to rods and columns. Equivalent welded-on steel anchor rods or shapes standard with the flexible-anchor manufacturer may be furnished when approved. Welds shall be cleaned and given one coat of zinc-rich touch up paint.

2.13.5 Bar Positioners

Bar positioners, used to prevent displacement of reinforcing bars during the course of construction, shall be factory fabricated from 9 gauge steel wire or equivalent, and coated with a hot-dip galvanized finish. Not more than one wire shall cross the cell. Telescoping bar positioner shall be manufactured from AISI 1065 spring steel and coated in accordance with ASTM B633.

2.14 JOINT REINFORCEMENT

NOTE: Location of horizontal joint reinforcement should be shown on the drawings. Reinforcement will have one wire in each mortar bed. Truss-type joint reinforcement will not be used. Adjustable joint reinforcement assemblies may be used in certain types of construction where it is feasible to construct one wythe independent of the other. If the type of design does not permit this type of construction, delete the sentences pertaining to adjustable joint reinforcement assemblies.

Various combinations of wire sizes are available and are usually designated as follows:

<table>
<thead>
<tr>
<th></th>
<th>Long. wires</th>
<th>Cross wires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>3.8 mm (9 gauge)</td>
<td>3.8 mm</td>
</tr>
<tr>
<td></td>
<td>(0.1483 inch)</td>
<td></td>
</tr>
<tr>
<td>Heavy Duty</td>
<td>4.8 mm (3/16 inch)</td>
<td>3.8 mm (9 gauge)</td>
</tr>
<tr>
<td></td>
<td>(0.1875 inch)</td>
<td>(0.1483 inch)</td>
</tr>
<tr>
<td>Extra Heavy Duty</td>
<td>4.8 mm (3/16 inch)</td>
<td>4.8 mm (3/16 inch)</td>
</tr>
<tr>
<td></td>
<td>(0.1875 inch)</td>
<td>(0.1875 inch)</td>
</tr>
</tbody>
</table>

Reinforcement made with 4.2 mm (8 gauge) wire is
considered special and is not available from all manufacturers.

Joint reinforcement shall be factory fabricated from steel wire conforming to ASTM A1064/A1064M, welded construction. Tack welding will not be acceptable in reinforcement used for wall ties. Wire shall have zinc coating conforming to ASTM A153/A153M, Class B-2. All wires shall be a minimum of [9] [_____] gauge. Reinforcement shall be ladder type design, having one longitudinal wire in the mortar bed of each face shell for hollow units and one wire for solid units. Joint reinforcement shall be placed a minimum of 16 mm 5/8 inch cover from either face. The distance between crosswires shall not exceed 400 mm 16 inches. Joint reinforcement for straight runs shall be furnished in flat sections not less than 3 m 10 feet long. Joint reinforcement shall be provided with factory formed corners and intersections. If approved for use, joint reinforcement may be furnished with adjustable wall tie features. Submit one piece of each type used, including corner and wall intersection pieces, showing at least two cross wires.

2.15 REINFORCING STEEL BARS AND RODS

Reinforcing steel bars and rods shall conform to ASTM A615/A615M, Grade 60.

2.16 CONTROL JOINT KEYS

NOTE: Control joint keys are generally not required vertically between the floor line or grade to other floor lines or roofs and no shear transfer is required across control joints. Delete paragraph when not required. Control joints will be detailed on the drawings. When control joint keys are not required by design, the control joint detail will show the head joint completely filled with mortar for the width of the wythe; but joints will be flush, raked, or raked and sealed as required.

Control joint keys shall be a factory fabricated solid section of natural or synthetic rubber (or combination thereof) conforming to ASTM D2000 or polyvinyl chloride conforming to ASTM D2287. The material shall be resistant to oils and solvents. The control joint key shall be provided with a solid shear section not less than 16 mm 5/8 inch thick and 10 mm 3/8 inch thick flanges, with a tolerance of plus or minus 2 mm 1/16 inch. The control joint key shall fit neatly, but without forcing, in masonry unit jamb sash grooves. The control joint key shall be flexible at a temperature of minus 34 degrees C minus 30 degrees F after five hours exposure, and shall have a durometer hardness of not less than 70 when tested in accordance with ASTM D2240.

2.17 RIGID BOARD-TYPE INSULATION

NOTE: Insert the appropriate thickness and R-Value to be used for the insulation. The total R-value for the insulation and the total thickness of the insulation must be coordinated to fit the space provided within the wall cavity. The thickness of
the insulation must allow for not less than 19 mm (3/4 inch) air space between the insulation and the facing veneer. This will limit the insulation thickness to 50 mm (2 inches) in a 70 mm (2-3/4 inch) cavity space. If greater insulation thickness is required the masonry wall must be designed to provide a larger cavity.

To assure adequate competition, an R-value should be chosen that allows several products to meet the specified thickness. The range of design R-values (in IP units) for foam insulations given by ASHRAE is 5 to 7 per inch. Verify range available from manufacturers. An aged R-value in SI units of 2 (11, in IP units) can be readily achieved with 50 mm (2 inches) of insulation.

Cellular plastic insulations (polystyrene, polyurethane and polyisocyanurate) are thermally efficient, however, certain precautions should be observed in their use due to high smoke development and toxicity of the smoke generated by the burning of these materials. Cellular plastic insulations should only be used in anchored veneer masonry walls where the insulation is completely isolated from the interior of the building by masonry, including all penetrations of the interior wythe.

**

Provide rigid board-type insulation as specified in Section 07 21 13 BOARD AND BLOCK INSULATION. Submit one piece of each type used, including corner and wall intersection pieces, showing at least two cross wires. Submit certificate attesting that the polyurethane or polyisocyanurate insulation furnished for the project contains recovered material, and showing an estimated percent of such recovered material.

2.18 EXPANSION-JOINT MATERIALS

**

NOTE: Using interior low-VOC products contributes to the following LEED credit: EQ4. Include VOC submittal if pursuing this LEED credit, and coordinate with Section 01 33 29 SUSTAINABILITY REPORTING.

**

Backer rod and sealant shall be adequate to accommodate joint compression equal to 50 percent of the width of the joint. The backer rod shall be compressible rod stock of polyethylene foam, polyurethane foam, butyl rubber foam, or other flexible, nonabsorptive material as recommended by the sealant manufacturer. Sealant shall conform to Section 07 92 00 JOINT SEALANTS, and shall be penetrating[with a maximum volatile organic compound (VOC) content of 600 grams/liter]. Submit one piece of each type of material used.

2.19 THROUGH WALL FLASHING

**

NOTE: Require flashing in exterior masonry walls,
including single-wythe construction, at all obstructions such as bond beams, sills, lintels, and concrete tie beams. The wall design and detailing must conform to National Concrete Masonry Association (NCMA) publications: TEK 13A, "Details for Building Dry Concrete Masonry Walls"; TEK 53, "Design of Concrete Masonry for Crack Control"; TEK 126, "Flashing Concrete Masonry"; BIA Technical Notes 7 for water penetration, resistance; and BIA Technical Notes 18A for crack control. Show locations and details on project drawings. This is a regional requirement which shall be used, when applicable, for NAVFAC SE projects; when appropriate, the requirements may be used for projects in other areas.

Reinforced membrane flashing should only be an option for residential construction. Do not use polyester film flashing on any other type construction projects.

Copper may stain masonry and deteriorate in high chloride environments.

Provide Through Wall Flashing as specified in Section 07 60 00 FLASHING AND SHEET METAL. Provide one of the following types [except that flashing indicated to terminate in reglets shall be metal or coated-metal flashing] [and] [except that the material shall be one which is not adversely affected by dampproofing material.]

2.19.1 Coated-Copper Flashing

0.2 kg 7 ounce, electrolytic copper sheet, uniformly coated on both sides with acidproof, alkaliproof, elastic bituminous compound. Factory apply coating to a weight of not less than 1.8 kg/square meter 6 ounces/square foot (approximately 0.9 kg/square meter 3 ounces/square foot on each side).

2.19.2 Copper or Stainless Steel Flashing

Copper, ASTM B370, minimum 450 kg 16 ounce weight; stainless steel, ASTM A167, Type 301, 302, 304, or 316, 0.4 mm 0.015 inch thick, No. 2D finish. Provide with factory-fabricated deformations that mechanically bond flashing against horizontal movement in all directions. Deformations shall consist of dimples, diagonal corrugations, or a combination of dimples and transverse corrugations.

2.19.3 Reinforced Membrane Flashing

Polyester film core with a reinforcing fiberglass scrim bonded to one side. The membrane shall be impervious to moisture, flexible, and not affected by caustic alkalis. The material, after being exposed for not less than 1/2 hour to a temperature of 0 degrees C 32 degrees F, shall show no cracking when, at that temperature, it is bent 180 degrees over a 2 mm 1/16 inch diameter mandrel and then bent at the same point over the same size mandrel in the opposite direction 360 degrees.
2.20 WEEP HOLE VENTILATORS

Weep hole ventilators shall be prefabricated aluminum, plastic or wood blocking sized to form the proper size opening in head joints. Provide aluminum and plastic inserts with grill or screen-type openings designed to allow the passage of moisture from cavities and to prevent the entrance of insects. Ventilators shall be sized to match modular construction with a standard 10 mm 3/8 inch mortar joint.

PART 3 EXECUTION

3.1 PREPARATION

Prior to start of work, masonry inspector shall verify the applicable conditions as set forth in ACI 530/530.1, inspection. The Contracting Officer will serve as inspector or will select a masonry inspector.

3.1.1 Protection

Ice or snow formed on the masonry bed shall be thawed by the application of heat. Heat shall be applied carefully until the top surface of the masonry is dry to the touch. Sections of masonry deemed frozen and damaged shall be removed before continuing construction of those sections.

3.1.1.1 Air Temperature 4 to 0 Degrees C 40 to 32 Degrees F

Heat sand or mixing water to produce mortar temperatures between 4 and 49 degrees C 40 and 120 degrees F.

3.1.1.2 Air Temperature 0 to minus 4 Degrees C 32 to 25 Degrees F

Heat sand and mixing water to produce mortar temperatures between 4 and 49 degrees C 40 and 120 degrees F. Maintain temperature of mortar on boards above freezing.

3.1.1.3 Air Temperature Minus 4 to Minus 7 Degrees C 25 to 20 Degrees F

Heat sand and mixing water to provide mortar temperatures between 4 and 49 degrees C 40 and 120 degrees F. Maintain temperature of mortar on boards above freezing. Employ windbreaks when wind is in excess of 24 km/hour 15 mph.

3.1.1.4 Air Temperature Minus 7 Degrees C 20 Degrees F and Below

Heat sand and mixing water to provide mortar temperatures between 4 and 49 degrees C 40 and 120 degrees F. Provide enclosure and auxiliary heat to maintain air temperature above 0 degrees C 32 degrees F. Temperature of units when laid must not be less than minus 7 degrees C 20 degrees F.

3.1.2 Completed Masonry and Masonry Not Being Worked On

3.1.2.1 Mean Daily Air Temperature 4 to 0 Degrees C 40 to 32 Degrees F

Protect masonry from rain or snow for 24 hours by covering with weather-resistant membrane.

3.1.2.2 Mean Daily Air Temperature 0 to Minus 4 Degrees C 32 to 25 Degrees F

 Completely cover masonry with weather-resistant membrane for 24 hours.
3.1.2.3 Mean Daily Air Temperature Minus 4 to Minus 7 Degrees C 25 to 20 Degrees F

Completey cover masonry with insulating blankets or equally protected for 24 hours.

3.1.2.4 Mean Daily Temperature Minus 7 Degrees C 20 Degrees F and Below

Maintain masonry temperature above 0 degrees C 32 degrees F for 24 hours by enclosure and supplementary heat, by electric heating blankets, infrared heat lamps, or other approved methods.

3.1.3 Stains

Protect exposed surfaces from mortar and other stains. When mortar joints are tooled, remove mortar from exposed surfaces with fiber brushes and wooden paddles. Protect base of walls from splash stains by covering adjacent ground with sand, sawdust, or polyethylene.

3.1.4 Loads

Do not apply uniform loads for at least 12 hours or concentrated loads for at least 72 hours after masonry is constructed. Provide temporary bracing as required.

3.1.5 Surfaces

Clean surfaces on which masonry is to be placed of laitance, dust, dirt, oil, organic matter, or other foreign materials and slightly roughen to provide a surface texture with a depth of at least 3 mm 1/8 inch. Sandblast, if necessary, to remove laitance from pores and to expose the aggregate.

3.2 LAYING MASONRY UNITS

**
NOTE: Specify bond pattern for each type of masonry. Where more than one bond pattern is required, the drawings should indicate the location and extent of each bond pattern. Bond patterns for reinforced hollow masonry construction should be such that cores of units will be in alignment vertically. Where stacked bond is specified in reinforced hollow masonry, horizontal rebars shall be provided at 600 mm (2 foot) intervals or horizontal joint reinforcement must be required in every other horizontal joint to provide mechanical bond between adjacent units. Veneers should be anchored at 300 mm (12 inches) on centers vertically when stacked bond is used and 400 mm (16 inches) on centers vertically when running bond is used. The use of stacked bond is discouraged and should only be permitted for small wall areas to give an architectural feature, such as for a building entrance detail.
**

a. Coordinate masonry work with the work of other trades to accommodate
built-in items and to avoid cutting and patching. Masonry units shall be laid in [running] [stacked] [the indicated] bond pattern. Facing courses shall be level with back-up courses, unless the use of adjustable ties has been approved in which case the tolerances shall be plus or minus 13 mm 1/2 inch. Each unit shall be adjusted to its final position while mortar is still soft and plastic.

b. Units that have been disturbed after the mortar has stiffened shall be removed, cleaned, and relaid with fresh mortar. Air spaces, cavities, chases, expansion joints, and spaces to be grouted shall be kept free from mortar and other debris. Units used in exposed masonry surfaces shall be selected from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work. Vertical joints shall be kept plumb.

c. Units being laid and surfaces to receive units shall be free of water film and frost. Solid units shall be laid in a nonfurrowed full bed of mortar. Mortar for veneer wythes shall be beveled and sloped toward the center of the wythe from the cavity side. Units shall be shoved into place so that the vertical joints are tight. Vertical joints of brick and the vertical face shells of concrete masonry units, except where indicated at control, expansion, and isolation joints, shall be completely filled with mortar. Mortar will be permitted to protrude up to 13 mm 1/2 inch into the space or cells to be grouted. Means shall be provided to prevent mortar from dropping into the space below.

d. In double wythe construction, the inner wythe may be brought up not more than 400 mm 16 inches ahead of the outer wythe. Collar joints shall be filled with mortar or grout during the laying of the facing wythe, and filling shall not lag the laying of the facing wythe by more than 200 mm 8 inches.

3.2.1 Forms and Shores

Provide bracing and scaffolding as required. Design bracing to resist wind pressure as required by local codes. Forms and shores shall be sufficiently rigid to prevent deflections which may result in cracking or other damage to supported masonry and sufficiently tight to prevent leakage of mortar and grout. Supporting forms and shores shall not be removed in less than 10 days.

3.2.2 Reinforced Concrete Masonry Units Walls

**
NOTE: For single-wythe, concrete masonry unit exterior walls, specify water-repellant admixture for both the masonry units and the mortar. This is a regional requirement which shall be used, when applicable, for NAVFAC SE projects; when appropriate, the requirements may be used for projects in other areas. Use only with ASTM C744 masonry units.
**

Where vertical reinforcement occurs, fill cores solid with grout. Lay units in such a manner as to preserve the unobstructed vertical continuity of cores to be filled. Embed the adjacent webs in mortar to prevent leakage of grout. Remove mortar fins protruding from joints before placing grout. Minimum clear dimensions of vertical cores shall be 50 by 75 mm 2
by 3 inches. Position reinforcing accurately as indicated before placing grout. As masonry work progresses, secure vertical reinforcing in place at vertical intervals not to exceed 160 bar diameters. Use puddling rod or vibrator to consolidate the grout. Minimum clear distance between masonry and vertical reinforcement shall be not less than 13 mm 1/2 inch. Unless indicated or specified otherwise, form splices by lapping bars not less than 40 bar diameters and wire tying them together.

3.2.3 Concrete Masonry Units

Units in piers, pilasters, columns, starting courses on footings, solid foundation walls, lintels, and beams, and where cells are to be filled with grout shall be full bedded in mortar under both face shells and webs. Other units shall be full bedded under both face shells. Head joints shall be filled solidly with mortar for a distance in from the face of the unit not less than the thickness of the face shell. Foundation walls below grade shall be grouted solid. Jamb units shall be of the shapes and sizes to conform with wall units. Solid units may be incorporated in the masonry work where necessary to fill out at corners, gable slopes, and elsewhere as approved. Double walls shall be stiffened at wall-mounted plumbing fixtures by use of strap anchors, two above each fixture and two below each fixture, located to avoid pipe runs, and extending from center to center of the double wall. Walls and partitions shall be adequately reinforced for support of wall-hung plumbing fixtures when chair carriers are not specified.

3.2.4 Clay or Shale Brick Units

**
NOTE: Specify type of bond required, if other than running bond is desired.
**

Lay brick facing with the better face exposed. Lay brick in running bond with each course bonded at corners, unless otherwise indicated. Lay molded brick with the frog side down. Brick that is cored, recessed, or has other deformations may be used in sills, treads, soldier courses, except where deformations will be exposed to view. [Lay fire brick by dipping each brick in a soft mixture of fire clay and water and then rubbing the brick into place with joints as thin as practicable or provide refractory mortar with joints not more than 10 mm 3/8 inch thick.]

3.2.4.1 Wetting of Units

**
NOTE: If clay, shale brick, or hollow brick is specified, include wetting requirements for units having an initial rate of absorption of more than 0.155 gm per minute per square cm (1 gm per minute per square inch) (one gram per minute per square inch) of bed surface.
**

Wetting of clay, shale brick, or hollow brick units having an initial rate of absorption of more than 0.155 gm per minute per square cm 1 gram per minute per square inch of bed surface shall be in conformance with ASTM C67. The method of wetting shall ensure that each unit is nearly saturated but surface dry when laid. Test clay or shale brick daily on the job, prior to laying, as follows: Using a wax pencil, draw a circle the size of a
quarter on five randomly selected bricks. Apply 20 drops of water with a medicine dropper to the surface within the circle on each brick. If the average time that the water is completely absorbed in the five bricks is less than 1-1/2 minutes, wet bricks represented by the five bricks tested.

3.2.4.2 Solid Units

Completely fill bed, head, and collar joints with mortar.

3.2.4.3 Hollow Units

Lay hollow units as specified for concrete masonry units.

3.2.4.4 Brick-Faced Walls

**
NOTE: Use the first bracketed option for masonry cavity wall construction. Use the second bracketed option for cold-formed steel framing and brick veneer.
**

For brick-faced walls [bond the two wythes in every sixth brick course with continuous horizontal joint reinforcement.] [bond brick in the pattern as indicated on the drawings.] Provide additional bonding ties spaced not more than one meter 3 feet apart around the perimeter of and within 300 mm 12 inches of all openings.

3.2.4.4.1 Collar Joints

Fill collar joints solid with mortar as each course of brick is laid. Do not disturb units in place.

3.2.4.4.2 Brick Sills

Lay brick on edge, slope, and project not less than 13 mm 1/2 inch beyond the face of the wall to form a wash and drip. Fill all joints solidly with mortar and tool.

3.2.4.5 Cavity Walls

**
NOTE: Include weep holes and dampproofing requirements in geographic areas where these are acceptable practices. Specify dampproofing for projects utilizing concrete masonry unit interior wythe cavity walls. Now that masonry wall cavities are usually at least half full of rigid board insulation, and the backup wythe is usually complete before the brickwork is started, the wood strip method of keeping the cavities clean is neither practicable nor effective. The specified method for concrete masonry unit and brick cavity wall is effective, but may be deleted if the specifier is reluctant to require it. Care must be taken (1) to prevent damage to mortar joints, especially adjacent to the washout holes, and (2) to prevent accumulation of water at the bottom of the wall. The cavities must be inspected to verify that they...
are clean and functional.

For NAVFAC SE projects, use second bracketed statement in the eighth sentence.

**
Provide a continuous cavity as indicated. Securely tie the two wythes together with horizontal joint reinforcement. Bevel mortar beds away from cavity to prevent projection into cavity when bricks are shoved in place. Keep cavities clear and clean of mortar droppings. [At the bottom of cavity walls, in the course immediately above the through-wall flashing, temporarily omit one brick every 1200 mm 4 feet. With a hose and clean water, wash all mortar droppings and debris out of the cavity through the temporary openings at least twice each day masonry is laid, and more often when required to keep the cavities clean. Fill in the openings with bricks and mortar after the wall is complete and the cavity has been inspected and found clean.] Provide weep holes of open head joints spaced 600 mm 24 inches o.c. [wherever the cavity is interrupted] [at base of wall and vertical obstructions (e.g. lintels)]. [Cavity face of interior wythe shall be dampproofed in accordance with Section 07 11 13 BITUMINOUS DAMPPROOFING.]

3.2.4.6 Reinforced Brick Walls

Provide two wythes of brick separated by a [_____] mm inch wide continuous space filled with [grout] [bricks "floated" in grout] and reinforced as indicated. Bevel mortar beds away from grout space to prevent projection into grout space when bricks are shoved in place. Deeply furrowed bed joints will not be permitted. Lay exterior wythe of brick to the height of each grout pour in advance of interior wythe. Clean grout space and set reinforcing before laying interior wythe. Provide metal ties to prevent spreading of the wythes and to maintain vertical alignment of walls. Position reinforcing as indicated. Wire vertical reinforcing securely in position as the brickwork progresses. Use puddling rod or vibrator to consolidate the grout. The minimum clear distance between parallel bars shall be the nominal diameter of the bars; the minimum clear distance between masonry and reinforcing shall be 6 mm 1/4 inch. Unless indicated or specified otherwise, form splices by lapping bars not less than 40 bar diameters and wire tying them together. Stagger splices in adjacent horizontal bars.

3.2.4.7 Chimneys

**
NOTE: If a chimney wall is 200 mm (8 inches) or less in thickness, the space between the flue liner and brickwork should be kept clean and clear to avoid cracking the brickwork.
**

Construct chimneys of brick with clay flue linings of the sizes indicated. Extend flue linings from 300 mm 12 inches below the smoke inlet to 100 mm 4 inches above the chimney cap. Place thimbles as indicated, flush with inside of or up to 25 mm one inch into the flue lining. Set linings in fire clay mortar or refractory mortar and fill and smooth the joints on the inside. Set each section of flue lining before surrounding brickwork reaches top of flue lining section below. Build brickwork around lining, and [fill the space] [leave a 25 mm one inch airspace] between lining and brickwork [with grout]. [Seal top of airspace before installing chimney
3.2.4.8 Brick Veneer

NOTE: Use this paragraph when cold-formed steel framing and brick veneer construction is required.

Provide a continuous cavity as indicated. Install brick veneer after sheathing, masonry anchors, and flashing have been installed to the cold-formed steel framing system. Care shall be provided to avoid damaging the moisture barrier. Damaged moisture barrier and flashing shall be repaired or replaced before brick veneer is installed. Means shall be provided to keep cavities clean and clear of mortar droppings.

3.2.5 Tolerances

Lay masonry plumb, true to line, with courses level. Keep bond pattern plumb throughout. Square corners unless noted otherwise. Except for walls constructed of prefaced concrete masonry units, lay masonry within the following tolerances (plus or minus unless otherwise noted):

<table>
<thead>
<tr>
<th>TABLE II TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation from the plumb in the lines and surfaces of columns, walls and arises</td>
</tr>
<tr>
<td>In adjacent masonry units</td>
</tr>
<tr>
<td>In 3 m 10 feet</td>
</tr>
<tr>
<td>In 6 m 20 feet</td>
</tr>
<tr>
<td>In 12 m 40 feet or more</td>
</tr>
<tr>
<td>Variations from the plumb for external corners, expansion joints, and other conspicuous lines</td>
</tr>
<tr>
<td>In 6 m 20 feet</td>
</tr>
<tr>
<td>In 12 m 40 feet or more</td>
</tr>
<tr>
<td>Variations from the level for exposed lintels, sills, parapets, horizontal grooves, and other conspicuous lines</td>
</tr>
<tr>
<td>In 6 m 20 feet</td>
</tr>
<tr>
<td>In 12 m 40 feet or more</td>
</tr>
<tr>
<td>Variation from level for bed joints and top surfaces of bearing walls</td>
</tr>
<tr>
<td>In 3 m 10 feet</td>
</tr>
</tbody>
</table>
TABLE II TOLERANCES

<table>
<thead>
<tr>
<th>Variations from horizontal lines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In 3 m 10 feet</td>
<td>6 mm1/4 inch</td>
</tr>
<tr>
<td>In 6 m 20 feet</td>
<td>10 mm3/8 inch</td>
</tr>
<tr>
<td>In 12 m 40 feet or more</td>
<td>13 mm1/2 inch</td>
</tr>
</tbody>
</table>

Variations in cross sectional dimensions of columns and in thickness of walls

| Minus | 6 mm1/4 inch |
| Plus | 13 mm1/2 inch |

3.2.6 Cutting and Fitting

Full units of the proper size shall be used wherever possible, in lieu of cut units. Cutting and fitting, including that required to accommodate the work of others, shall be done by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Wet cut units, before being placed in the work, shall be dried to the same surface-dry appearance as uncut units being laid in the wall. Cut edges shall be clean, true and sharp. Openings in the masonry shall be made carefully so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Reinforced masonry lintels shall be provided above openings over 300 mm 12 inches wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used.

3.2.7 Jointing

Joints shall be tooled when the mortar is thumbprint hard. Horizontal joints shall be tooled last. Joints shall be brushed to remove all loose and excess mortar. Mortar joints shall be finished as follows:

3.2.7.1 Flush Joints

Joints in concealed masonry surfaces and joints at electrical outlet boxes in wet areas shall be flush cut. Flush cut joints shall be made by cutting off the mortar flush with the face of the wall. Joints in unparged masonry walls below grade shall be pointed tight. Flush joints for architectural units, such as fluted units, shall completely fill both the head and bed joints.

3.2.7.2 Tooled Joints

NOTE: Joints in exterior masonry walls exposed to weather will be tooled with an approved mortar joint, typically a slightly concave joint. Other joints that are suitable for weathertight construction and may be considered for architectural purposes are: Vee, Beaded, or Weathered types.
Exposed to view or painted interior masonry walls will also be tooled, typically with a slightly concaved joint, but may also be tooled with other joint types as architecturally desired.

Joints in exposed exterior and interior masonry surfaces shall be tooled [slightly concave] [____]. Joints shall be tooled with a jointer slightly larger than the joint width so that complete contact is made along the edges of the unit. Tooling shall be performed so that the mortar is compressed and the joint surface is sealed. Jointer of sufficient length shall be used to obtain a straight and true mortar joint.

3.2.7.3 Door and Window Frame Joints

On the exposed interior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 10 mm 3/8 inch. On the exterior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 10 mm 3/8 inch.

3.2.8 Joint Widths

Joint widths shall be as follows:

3.2.8.1 Concrete Masonry Units

Concrete masonry units shall have 10 mm 3/8 inch joints, except for preaced concrete masonry units.

3.2.8.2 Prefaced Concrete Masonry Units

Prefaced concrete masonry units shall have a joint width of 10 mm 3/8 inch wide on unfaced side and not less than 5 mm 3/16 inch nor more than 6 mm 1/4 inch wide on prefaced side.

3.2.8.3 Brick

Brick joint widths shall be the difference between the actual and nominal dimensions of the brick in either height or length. Brick expansion joint widths shall be as shown.

3.2.9 Embedded Items

Fill spaces around built-in items with mortar. Point openings around flush-mount electrical outlet boxes in wet locations with mortar. Embed anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in as the masonry work progresses. Fully embed anchors, ties and joint reinforcement in the mortar. Fill cells receiving anchor bolts and cells of the first course below bearing plates with grout.

3.2.10 Unfinished Work

Step back unfinished work for joining with new work. Toothing may be resorted to only when specifically approved. Remove loose mortar and thoroughly clean the exposed joints before laying new work.

3.2.11 Masonry Wall Intersections
NOTE: Details will be shown on the drawings which illustrate corners and intersections of structural bond beam reinforcement and factory-formed joint reinforcement. When joint reinforcement is not used, delete prefabricated corners or tee pieces.

Masonry bond each course at corners and elsewhere as shown. Masonry walls shall be anchored or tied together at corners and intersections with bond beam reinforcement and prefabricated corner or tee pieces of joint reinforcement as shown.

3.2.12 Partitions

NOTE: Walls and partitions which serve as fire walls or fire-rated walls will be shown. Sections and details of these walls will clearly indicate the extent of such walls. Non-structural masonry partition walls will not be tied in any way to structural or exterior masonry walls. Isolation joints will be used at these intersections. When 100 mm (4 inch) masonry partitions are not used, delete reference to these units and their intersections.

Partitions shall be continuous from floor to underside of floor or roof deck where shown. Openings in firewalls around joists or other structural members shall be filled as indicated or approved. Where suspended ceilings on both sides of partitions are indicated, the partitions other than those shown to be continuous may be stopped approximately 100 mm 4 inches above the ceiling level. An isolation joint shall be placed in the intersection between partitions and structural or exterior walls as shown. Interior partitions having 100 mm 4 inch nominal thick units shall be tied to intersecting partitions of 100 mm 4 inch units, 125 mm 5 inches into partitions of 150 mm 6 inch units, and 175 7 inches into partitions of 200 mm 8 inch or thicker units. Cells within vertical plane of ties shall be filled solid with grout for full height of partition or solid masonry units may be used. Interior partitions having masonry walls over 100 mm 4 inches thick shall be tied together with joint reinforcement. Partitions containing joint reinforcement shall be provided with prefabricated pieces at corners and intersections or partitions.

3.3 COMPRESSED EARTH BLOCK

Install according to manufacturer instructions and accepted industry standards.

3.4 ANCHORED VENEER CONSTRUCTION

NOTE: Adjustable joint reinforcement assemblies may be used at locations of low seismic activity where the design wind speed is less than 160 km/hr (100 mph); designer must follow the guidance provided in UFC 3-310-04 SEISMIC DESIGN FOR BUILDINGS for any seismic design. Adjustable assemblies are normally used when constructing one wythe independent of the
other. If the design does not permit this type of construction, delete the reference pertaining to adjustable joint reinforcement assemblies. The preferred method of construction, however, is to bring the wythes up together. Typically, continuous joint reinforcement is used to tie the two wythes together as well as providing for shrinkage cracking control. Continuous joint reinforcement, used as wall ties, will typically be spaced not over 400 mm (16 inches) on center vertically. Spacing of joint reinforcement will be shown on the contract drawings.

** Completely separate the inner and outer wythes by a continuous airspace as indicated. Lay up both the inner and the outer wythes together except when adjustable joint reinforcement assemblies are approved for use. When both wythes are not brought up together, through-wall flashings shall be protected from damage until they are fully enclosed in the wall. The airspace between the wythes shall be kept clear and free of mortar droppings by temporary wood strips laid on the wall ties and carefully lifted out before placing the next row of ties. A coarse gravel or drainage material shall be placed behind the weep holes in the cavity to a minimum depth of 100 mm 4 inches of coarse aggregate or 250 mm 10 inches of drainage material to keep mortar droppings from plugging the weep holes.

3.5 WEEP HOLES

NOTE: Include weep holes and dampproofing requirements in geographic areas where these are acceptable practices. Specify dampproofing in Division 7 of the project specification for projects utilizing concrete masonry unit interior wythe cavity walls. Now that masonry wall cavities are usually at least half full of rigid board insulation, and the backup wythe is usually complete before the brickwork is started, the wood strip method of keeping the cavities clean is neither practicable nor effective. The specified method for concrete masonry unit and brick cavity wall is effective, but may be deleted if the specifier is reluctant to require it. Care must be taken (1) to prevent damage to mortar joints, especially adjacent to the washout holes, and (2) to prevent accumulation of water at the bottom of the wall. The cavities must be inspected to verify that they are clean and functional. Weep holes and ventilators shall be located to ensure that in severe weather, wind driven water does not enter and drain into the interstitial space. Indicate acceptable locations on drawings.

For NAVFAC SE projects, delete the second sentence and substitute with the following: "Weep holes shall be full open head joints 600 mm (20 inches) o.c. for brick faced walls and minimum 50 mm (2 inch) open head joints 900 mm (32 inches) o.c. for concrete masonry unit construction."
Wherever through-wall flashing occurs, provide weep holes to drain flashing to exterior at acceptable locations as indicated on drawings. Weep holes shall be [open head joints]. [clear round holes not less than 6 mm 1/4 inch in diameter] at 600 mm 24 inches o.c. Weep holes shall be provided not more than 600 mm 24 inches on centers in mortar joints of the exterior wythe above wall flashing, over foundations, bond beams, and any other horizontal interruptions of the cavity. Weep holes shall be perfectly horizontal or slightly canted downward to encourage water drainage outward and not inward. [Weep holes shall be formed by placing short lengths of well-greased No. 10, 8 mm 5/16 inch nominal diameter, braided cotton sash cord in the mortar and withdrawing the cords after the wall has been completed.] [Weep holes shall be constructed using weep hole ventilators.] Other approved methods may be used for providing weep holes. Weep holes shall be kept free of mortar and other obstructions.

3.6 COMPOSITE WALLS

Tie masonry wythes together with joint reinforcement or with unit wall ties. Anchor facing to concrete backing with wire dovetail anchors set in slots built in the face of the concrete as specified in Section [03 30 00.00 10 CAST-IN-PLACE CONCRETE][03 30 00 CAST-IN-PLACE CONCRETE]. Anchor or tie the facing wythe to the backup at a maximum spacing of 400 mm 16 inches on center vertically and 600 mm 24 inches on center horizontally. Unit ties shall be spaced not over 600 mm 24 inches on centers horizontally, in courses not over 400 mm 16 inches apart vertically, staggered in alternate courses. Ties shall be laid not closer than 16 mm 5/8 inch to either masonry face. Ties shall not extend through control joints. Collar joints between masonry facing and masonry backup shall be filled solidly with grout.

3.7 MORTAR MIX

Mix mortar in a mechanically operated mortar mixer for at least 3 minutes, but not more than 5 minutes. Measure ingredients for mortar by volume. Ingredients not in containers, such as sand, shall be accurately measured by the use of measuring boxes. Mix water with the dry ingredients in sufficient amount to provide a workable mixture which will adhere to the vertical surfaces of masonry units. Retemper mortar that has stiffened because of loss of water through evaporation by adding water to restore the proper consistency and workability. Discard mortar that has reached its initial set or that has not been used within [2.5] [_____] hours after mixing.

3.8 REINFORCING STEEL

Clean reinforcement of loose, flaky rust, scale, grease, mortar, grout, or other coating which might destroy or reduce its bond prior to placing grout. Bars with kinks or bends not shown on the drawings shall not be used. Reinforcement shall be placed prior to grouting. Unless otherwise indicated, vertical wall reinforcement shall extend to within 50 mm 2 inches of tops of walls.

3.8.1 Positioning Bars

**
NOTE: Positioning of bars will be shown on the drawings.
**
Vertical bars shall be accurately placed within the cells at the positions indicated on the drawings. A minimum clearance of 13 mm 1/2 inch shall be maintained between the bars and masonry units. Minimum clearance between parallel bars shall be one diameter of the reinforcement. Vertical reinforcing may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the reinforcement. Column and pilaster ties shall be wired in position around the vertical steel. Ties shall be in contact with the vertical reinforcement and shall not be placed in horizontal bed joints.

3.8.2 Splices

Bars shall be lapped a minimum of 48 diameters of the reinforcement. Welded or mechanical connections shall develop at least 125 percent of the specified yield strength of the reinforcement.

3.9 JOINT REINFORCEMENT INSTALLATION

**
NOTE: Location of horizontal joint reinforcement should be shown on the drawings with the maximum vertical spacing normally being 400 mm (16 inches).
**

Install joint reinforcement at 400 mm 16 inches on center or as indicated. Reinforcement shall be lapped not less than 150 mm 6 inches. Install prefabricated sections at corners and wall intersections. Place the longitudinal wires of joint reinforcement to provide not less than 16 mm 5/8 inch cover to either face of the unit.

3.10 PLACING GROUT

Fill cells containing reinforcing bars with grout. Hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces shall be filled solid with grout. Cells under lintel bearings on each side of openings shall be filled solid with grout for full height of openings. Walls below grade, lintels, and bond beams shall be filled solid with grout. Units other than open end units may require grouting each course to preclude voids in the units. Grout not in place within 1-1/2 hours after water is first added to the batch shall be discarded. Sufficient time shall be allowed between grout lifts to preclude displacement or cracking of face shells of masonry units. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, the wall shall be torn down and rebuilt.

3.10.1 Vertical Grout Barriers for Fully Grouted Walls

Provide grout barriers not more than 10 m 30 feet apart, or as required, to limit the horizontal flow of grout for each pour.

3.10.2 Horizontal Grout Barriers

Embed grout barriers in mortar below cells of hollow units receiving grout.
3.10.3 Grout Holes and Cleanouts

3.10.3.1 Grout Holes

Provide grouting holes in slabs, spandrel beams, and other in-place overhead construction. Locate holes over vertical reinforcing bars or as required to facilitate grout fill in bond beams. Provide additional openings spaced not more than 400 mm (16 inches) on centers where grouting of all hollow unit masonry is indicated. Openings shall not be less than 100 mm (4 inches) in diameter or 75 by 100 mm (3 by 4 inches) in horizontal dimensions. Upon completion of grouting operations, plug and finish grouting holes to match surrounding surfaces.

3.10.3.2 Cleanouts for Hollow Unit Masonry Construction

Provide cleanout holes at the bottom of every pour in cores containing vertical reinforcement when the height of the grout pour exceeds 1.5 m (5 feet). Where all cells are to be grouted, construct cleanout courses using bond beam units in an inverted position to permit cleaning of all cells. Provide cleanout holes at a maximum spacing of 800 mm (32 inches) where all cells are to be filled with grout. Establish a new series of cleanouts if grouting operations are stopped for more than 4 hours. Cleanouts shall not be less than 75 by 100 mm (3 by 4 inch) openings cut from one face shell. Manufacturer's standard cutout units may be used at the Contractor's option. Cleanout holes shall not be closed until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, close cleanout holes in an approved manner to match surrounding masonry.

3.10.3.3 Cleanouts for Solid Unit Masonry Construction

Provide cleanouts for construction of walls consisting of a grout filled cavity between solid masonry wythes at the bottom of every pour by omitting every other masonry unit from one wythe. Establish a new series of cleanouts if grouting operations are stopped for more than 4 hours. Do not plug cleanout holes until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, close cleanout holes in an approved manner to match surrounding masonry.

3.10.4 Grouting Equipment

3.10.4.1 Grout Pumps

Pumping through aluminum tubes will not be permitted. Operate pumps to produce a continuous stream of grout without air pockets, segregation, or contamination. Upon completion of each day's pumping, remove waste materials and debris from the equipment, and dispose of outside the masonry.

3.10.4.2 Vibrators

Internal vibrators shall maintain a speed of not less than 5,000 impulses per minute when submerged in the grout. Maintain at least one spare vibrator at the site at all times. Apply vibrators at uniformly spaced points not further apart than the visible effectiveness of the machine. Limit duration of vibration to time necessary to produce satisfactory consolidation without causing segregation.
3.10.5 Grout Placement

**
NOTE: On Navy projects, for concrete masonry, limit height of grout pour to 1200 mm (4 feet) for all CMU widths of 200 mm (8 inch) or wider and limit heights of grout pours to 600 mm (2 feet) for all CMU widths of 150 mm (6 inch) or less, except as required by ACI 1530.1 which limits heights with respect to grout type in smaller spaces
**

Lay masonry to the top of a pour before placing grout. Do no place grout in two-wythe solid unit masonry cavity until mortar joints have set for at least 3 days during hot weather and 5 days during cold damp weather. Grout shall not be placed in hollow unit masonry until mortar joints have set for at least 24 hours. Grout shall be placed using a hand bucket, concrete hopper, or grout pump to completely fill the grout spaces without segregation of the aggregates. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. The height of grout pours and type of grout used shall be limited by the dimensions of grout spaces as indicated in Table III. Low-lift grout methods may be used on pours up to and including 1.5 m 5 feet in height. High-lift grout methods shall be used on pours exceeding 1.5 m 5 feet in height.

3.10.5.1 Low-Lift Method

Grout shall be placed at a rate that will not cause displacement of the masonry due to hydrostatic pressure of the grout. Mortar protruding more than 13 mm 1/2 inch into the grout space shall be removed before beginning the grouting operation. Grout pours 300 mm 12 inches or less in height shall be consolidated by mechanical vibration or by puddling. Grout pours over 300 mm 12 inches in height shall be consolidated by mechanical vibration and reconsolidated by mechanical vibration after initial water loss and settlement has occurred. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. Low-lift grout shall be used subject to the limitations of Table III.

3.10.5.2 High-Lift Method

Mortar droppings shall be cleaned from the bottom of the grout space and from reinforcing steel. Mortar protruding more than 6 mm 1/4 inch into the grout space shall be removed by dislodging the projections with a rod or stick as the work progresses. Reinforcing, bolts, and embedded connections shall be rigidly held in position before grouting is started. CMU units shall not be pre-wetted. Grout, from the mixer to the point of deposit in the grout space shall be placed as rapidly as practical by pumping and placing methods which will prevent segregation of the mix and cause a minimum of grout splatter on reinforcing and masonry surfaces not being immediately encased in the grout lift. The individual lifts of grout shall be limited to 1.2 m 4 feet in height. The first lift of grout shall be placed to a uniform height within the pour section and vibrated thoroughly to fill all voids. This first vibration shall follow immediately behind the pouring of the grout using an approved mechanical vibrator. After a waiting period sufficient to permit the grout to become plastic, but before it has taken any set, the succeeding lift shall be poured and vibrated 300 to 450 mm 12 to 18 inches into the preceding lift. If the placing of the succeeding lift is going to be delayed beyond the period of workability of the preceding, each lift shall be reconsolidated by reworking with a second
vibrator as soon as the grout has taken its settlement shrinkage. The waiting, pouring, and reconsolidation steps shall be repeated until the top of the pour is reached. The top lift shall be reconsolidated after the required waiting period. The high-lift grouting of any section of wall between vertical grout barriers shall be completed to the top of a pour in one working day unless a new series of cleanout holes is established and the resulting horizontal construction joint cleaned. High-lift grout shall be used subject to the limitations in Table III.

<table>
<thead>
<tr>
<th>Maximum Grout Pour Height m feet (4)</th>
<th>Grout Type</th>
<th>Grouting Procedure</th>
<th>Minimum Dimensions of the Total Clear Areas Within Grout Spaces and Cells in mm inches (1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>Fine</td>
<td>Low Lift</td>
<td>203/4, 40 x 501-1/2 x 2</td>
</tr>
<tr>
<td>1.55</td>
<td>Fine</td>
<td>Low Lift</td>
<td>502, 50 x 752 x 3</td>
</tr>
<tr>
<td>2.48</td>
<td>Fine</td>
<td>High Lift</td>
<td>502, 50 x 752 x 3</td>
</tr>
<tr>
<td>3.612</td>
<td>Fine</td>
<td>High Lift</td>
<td>652-1/2, 65 x 752-1/2 x 3</td>
</tr>
<tr>
<td>7.324</td>
<td>Fine</td>
<td>High Lift</td>
<td>753, 75 x 753 x 3</td>
</tr>
<tr>
<td>0.31</td>
<td>Coarse</td>
<td>Low Lift</td>
<td>401-1/2, 40 x 751-1/2 x 3</td>
</tr>
<tr>
<td>1.55</td>
<td>Coarse</td>
<td>Low Lift</td>
<td>502, 65 x 752-1/2 x 3</td>
</tr>
<tr>
<td>2.48</td>
<td>Coarse</td>
<td>High Lift</td>
<td>502, 75 x 753 x 3</td>
</tr>
<tr>
<td>3.612</td>
<td>Coarse</td>
<td>High Lift</td>
<td>652-1/2, 75 x 753 x 3</td>
</tr>
<tr>
<td>7.324</td>
<td>Coarse</td>
<td>High Lift</td>
<td>753, 75 x 1003 x 4</td>
</tr>
</tbody>
</table>

Notes:

(1) The actual grout space or cell dimension shall be larger than the sum of the following items:
(a) The required minimum dimensions of total clear areas given in the table above;
(b) The width of any mortar projections within the space;
(c) The horizontal projections of the diameters of the horizontal reinforcing bars within a cross section of the grout space or cell.

(2) The minimum dimensions of the total clear areas shall be made up of one or more open areas, with at least one area being 20 mm 3/4 inch or greater in width.

(3) For grouting spaces between masonry wythes.
Where only cells of hollow masonry units containing reinforcement are grouted, the maximum height of the pour shall not exceed the distance between horizontal bond beams.

3.11 BOND BEAMS

**
NOTE: Bond beams that are continuous over openings will be reinforced to serve as lintels.**

Bond beams shall be filled with grout and reinforced as indicated on the drawings. Grout barriers shall be installed under bond beam units to retain the grout as required. Reinforcement shall be continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated on the drawings. Where splices are required for continuity, reinforcement shall be lapped 48 bar diameters. A minimum clearance of 13 mm 1/2 inch shall be maintained between reinforcement and interior faces of units.

3.12 CONTROL JOINTS

**
NOTE: Control joints will be located and detailed on the drawings. When control joint keys are required it is a Contractor's option to use either special control joint units or sash jamb units with control joint keys. If one is preferred over the other in the design, edit this paragraph accordingly and provide specific details on the drawings. When control joint keys are not required, fill head joints with mortar as detailed.**

Control joints shall be provided as indicated and shall be constructed by using [mortar to fill the head joint] [special control-joint units] [sash jamb units with control joint key] [open end stretcher units] in accordance with the details shown on the drawings. Sash jamb units shall have a 19 by 19 mm 3/4 by 3/4 inch groove near the center at end of each unit. The vertical mortar joint at control joint locations shall be continuous, including through all bond beams. This shall be accomplished by utilizing half blocks in alternating courses on each side of the joint. The control joint key shall be interrupted in courses containing continuous bond beam steel. In single wythe exterior masonry walls, the exterior control joints shall be raked to a depth of 19 mm 3/4 inch; backer rod and sealant shall be installed in accordance with Section 07 92 00 JOINT SEALANTS. Exposed interior control joints shall be raked to a depth of 6 mm 1/4 inch. Concealed control joints shall be flush cut.

3.13 INDICATED JOINTS

[Brick expansion joints][Concrete masonry veneer joints] located, detailed, and constructed as indicated. Keep joints free of mortar and other debris.

3.14 SHELF ANGLES

Adjust shelf angles as required to keep the masonry level and at the proper elevation. Shelf angles shall be galvanized and provided in sections not longer than 3 m 10 feet and installed with a 6 mm 1/4 inch gap between

SECTION 04 20 00 Page 56
sections. Shelf angles shall be mitered and welded at building corners with each angle not shorter than 1.2 m 4 feet, unless limited by wall configuration.

3.15 LINTELS

3.15.1 Masonry Lintels

Construct masonry lintels with lintel units filled solid with grout in all courses and reinforced with a minimum of two No. 4 bars in the bottom course unless otherwise indicated on the drawings. Lintel reinforcement shall extend beyond each side of masonry opening 40 bar diameters or 600 mm 24 inches, whichever is greater. Reinforcing bars shall be supported in place prior to grouting and shall be located 13 mm 1/2 inch above the bottom inside surface of the lintel unit.

3.15.2 Precast Concrete and Steel Lintels

Construct precast concrete and steel lintels as shown on the drawings. Lintels shall be set in a full bed of mortar with faces plumb and true. Steel and precast lintels shall have a minimum bearing length of 200 mm 8 inches unless otherwise indicated on the drawings.

3.16 SILLS AND COPINGS

Sills and copings shall be set in a full bed of mortar with faces plumb and true.

3.17 ANCHORAGE TO CONCRETE AND STRUCTURAL STEEL

**
NOTE: If spacing of anchors varies from that specified, edit these paragraphs accordingly.
**

3.17.1 Anchorage to Concrete

Anchorage of masonry to the face of concrete columns, beams, or walls shall be with dovetail anchors spaced not over 400 mm 16 inches on centers vertically and 600 mm 24 inches on center horizontally.

3.17.2 Anchorage to Structural Steel

Masonry shall be anchored to vertical structural steel framing with adjustable steel wire anchors spaced not over 400 mm 16 inches on centers vertically, and if applicable, not over 600 mm 24 inches on centers horizontally.

3.18 PARGING

**
NOTE: If parging is not required, or if other types of dampproofing are in the project, this paragraph will be deleted.
**

The outside face of below-grade exterior concrete-masonry unit walls enclosing usable rooms and spaces, except crawl spaces, shall be parged with type S mortar. Parging shall not be less than 13 mm 1/2 inch thick
troweled to a smooth dense surface so as to provide a continuous unbroken shield from top of footings to a line 150 mm 6 inches below adjacent finish grade, unless otherwise indicated. Parging shall be coved at junction of wall and footing. Parging shall be damp-cured for 48 hours or more before backfilling. Parging shall be protected from freezing temperatures until hardened.

3.19 INSULATION

Anchored veneer walls shall be insulated, where shown, by installing board-type insulation on the cavity side of the inner wythe. Board type insulation shall be applied directly to the masonry or thru-wall flashing with adhesive. Insulation shall be neatly fitted between obstructions without impaling of insulation on ties or anchors. The insulation shall be applied in parallel courses with vertical joints breaking midway over the course below and shall be applied in moderate contact with adjoining units without forcing, and shall be cut to fit neatly against adjoining surfaces.

3.20 SPLASH BLOCKS

Locate splash blocks as indicated.

3.21 POINTING AND CLEANING

After mortar joints have attained their initial set, but prior to hardening, completely remove mortar and grout daubs or splashings from masonry-unit surfaces that will be exposed or painted. Before completion of the work, defects in joints of masonry to be exposed or painted shall be raked out as necessary, filled with mortar, and tooled to match existing joints. Immediately after grout work is completed, scum and stains which have percolated through the masonry work shall be removed using a high pressure stream of water and a stiff bristled brush. Masonry surfaces shall not be cleaned, other than removing excess surface mortar, until mortar in joints has hardened. Masonry surfaces shall be left clean, free of mortar daubs, dirt, stain, and discoloration, including scum from cleaning operations, and with tight mortar joints throughout. Metal tools and metal brushes shall not be used for cleaning.

3.21.1 Dry-Brushing

**
** NOTE: Use a. or b. and delete the other; then add c. to the one selected. **
**

a. Exposed concrete masonry unit

b. Exposed concrete brick surfaces

c. shall be dry-brushed at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes.

3.21.2 Clay or Shale Brick Surfaces

Clean exposed clay or shale brick masonry surfaces as necessary to obtain surfaces free of stain, dirt, mortar and grout daubs, efflorescence, and discoloration or scum from cleaning operations. After cleaning, examine the sample panel of similar material for discoloration or stain as a result
of cleaning. If the sample panel is discolored or stained, change the method of cleaning to ensure that the masonry surfaces in the structure will not be adversely affected. The exposed masonry surfaces shall be water-soaked and then cleaned with a solution proportioned 30 mL 1/2 cup trisodium phosphate and 30 mL 1/2 cup laundry detergent to 1 L one gallon of water or cleaned with a proprietary masonry cleaning agent specifically recommended for the color and texture by the clay products manufacturer. The solution shall be applied with stiff fiber brushes, followed immediately by thorough rinsing with clean water. Proprietary cleaning agents shall be used in conformance with the cleaning product manufacturer's printed recommendations. Efflorescence shall be removed in conformance with the brick manufacturer's recommendations.

3.22 BEARING PLATES

**
NOTE: The bearing details must be shown on the drawings. The thermal effects must be considered for steel beams bearing on masonry to prevent cracking of masonry walls due to thermal expansion of steel framing members.
**

Set bearing plates for beams, joists, joist girders and similar structural members to the proper line and elevation with damp-pack bedding mortar, except where non-shrink grout is indicated. Bedding mortar and non-shrink grout shall be as specified in Section [03 30 00.00 10 CAST-IN-PLACE CONCRETE] [03 30 00 CAST-IN-PLACE CONCRETE].

3.23 PROTECTION

Protect facing materials against staining. Cover top of walls with nonstaining waterproof covering or membrane when work is not in progress. Covering of the top of the unfinished walls shall continue until the wall is waterproofed with a complete roof or parapet system. Covering shall extend a minimum of 600 mm 2 feet down on each side of the wall and shall be held securely in place. Before starting or resuming, top surface of masonry in place shall be cleaned of loose mortar and foreign material.

3.24 WASTE MANAGEMENT

**
NOTE: Diverting waste from the landfill contributes to the following LEED credit: MR2. Coordinate with Section 01 74 19 CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT.
**

Manage waste according to the Waste Management Plan and as follows. Minimize water used to wash mixing equipment. Use trigger operated spray nozzles for water hoses.

3.24.1 Separate and Recycle Waste

Place materials defined as hazardous or toxic waste in designated containers. Fold up metal banding, flatten, and place in designated area for recycling. Collect wood packing shims and pallets and place in designated area. Use leftover mixed mortar as [retaining wall footing ballast] [cavity fill at grade] [underground utility pipe kickers] [_____].
where lower strength mortar meets the requirements for bulk fill. Separate masonry waste and place in designated area for use as structural fill. Separate selected masonry waste and excess for landscape uses, either whole or crushed as ground cover.

3.24.2 Take-Back Program

**

NOTE: Take-back programs refer to programs in which the product manufacturer "takes-back" scrap material and/or packaging associated with its product.
**

Collect information from manufacturer for take-back program options. Set aside [masonry units, full and partial] [scrap] [packaging] [_____] to be returned to manufacturer for recycling into new product. When such a service is not available, local recyclers shall be sought after to reclaim the materials. Submit documentation that includes contact information, summary of procedures, and the limitations and conditions applicable to the project. Indicate manufacturer's commitment to reclaim materials for recycling and/or reuse.

3.25 TEST REPORTS

3.25.1 Field Testing of Mortar

**

NOTE: Delete this paragraph for structures having 185 square meters (2,000 square feet) or less of wall area, including openings. See UFC 3-310-04 and ASTM C780 for evaluating mortar test results.
**

Take at least three specimens of mortar each day. Spread a layer of mortar 13 to 16 mm 1/2 to 5/8 inch thick on the masonry units and allowed to stand for one minute. Prepare and test the specimens for compressive strength in accordance with ASTM C780. Submit test results.

3.25.2 Field Testing of Grout

**

NOTE: Delete this paragraph for structures having 185 square meters (2,000 square feet) or less of wall area, including openings.
**

Field sampling and testing of grout shall be in accordance with the applicable provisions of ASTM C1019. A minimum of three specimens of grout per day shall be sampled and tested. Each specimen shall have a minimum ultimate compressive strength of 13.8 MPa 2000 psi at 28 days. Submit test results.

3.25.3 Efflorescence Test

**

NOTE: Delete this paragraph in areas where efflorescence has not been a problem. Efflorescence is generally the result of poor design and detailing. Properly covered or flashed walls are
generally free of efflorescence. Efflorescence testing is generally not required.

Test brick, which will be exposed to weathering, for efflorescence. Schedule tests far enough in advance of starting masonry work to permit retesting if necessary. Sampling and testing shall conform to the applicable provisions of ASTM C67. Units meeting the definition of "effloresced" will be subject to rejection. Submit test results.

3.25.4 Prism Tests

NOTE: Prism testing will only be required for structures requiring masonry compressive strengths higher than the assumed value of 9.3 MPa (1350 psi). Prism testing normally will not be required. Delete this paragraph when prism testing is not required.

Perform at least one prism test sample for each 465 square meters 5,000 square feet of wall but not less than three such samples shall be made for any building. Three prisms will be used in each sample. Prisms shall be tested in accordance with ACI 530/530.1. Seven-day tests may be used provided the relationship between the 7- and 28-day strengths of the masonry is established by the tests of the materials used. Compressive strength shall not be less than [_____] MPa psi at 28 days. If the compressive strength of any prism falls below the specified value by more than 3.5 MPa 500 psi, steps shall be taken to assure that the load-carrying capacity of the structure is not jeopardized. If the likelihood of low-strength masonry is confirmed and computations indicate that the load-carrying capacity may have been significantly reduced, tests of cores drilled, or prisms sawed, from the area in question may be required. In such case, three specimens shall be taken for each prism test more than 3.5 MPa 500 psi below the specified value. Masonry in the area in question shall be considered structurally adequate if the average compressive strength of three specimens is equal to at least 85 percent of the specified value, and if the compressive strength of no single specimen is less than 75 percent of the specified value. Additional testing of specimens extracted from locations represented by erratic core or prism strength test results will be permitted. Submit test results.

3.25.5 Single-Wythe Masonry Wall Water Penetration Test

NOTE: Include masonry wall water penetration testing only for single-wythe masonry wall constructions where wall water penetration will impair mission-critical operations, create an immediate safety hazard, or have a detrimental impact on interior finishes. Testing evaluates the assembled wall test panel and does not assure compliant wall construction in the field.

Prior to start of field construction of the single-wythe masonry wall, perform masonry wall water penetration test on mock-up wall assemblies consisting of the identical design, materials, mix, and construction

methods as the actual wall construction and in accordance with ASTM E514/E514M. Prepare a minimum of three specimens and cure for minimum 28 days prior to testing. Construct panels by the same methods, processes, and applications to be used on the project's construction site. The spray test duration shall be 6 hours for each specimen. No water shall be visible on back of test panels during the test and any areas of dampness on the backside of the test panels shall not exceed 25 percent of the wall area. Dampness is defined as any area of surface darkening or discoloration due to moisture penetration or accumulation below the observed surface. Construct additional test panels for each failed test performed until three test panels pass the test. Factors that can affect test performance include materials, mixing, and quality of application and workmanship. Materials, mixing, and methods adjustments may be necessary in order to provide construction that passes the water penetration test. Document and record the test specimen construction materials and application and provide written test report in accordance with ASTM E514/E514M, supplemented by a detailed discussion of the specifics of test panel construction, application methods and processes used, quality of construction, and any variances or deviations that may have occurred between test panels during test panel construction. For failed test panels, identify in the supplemental report any variances, deficiencies or flaws that contributed to test panel failure and itemize the precautions to be taken in field construction of the masonry wall to prevent similar deficiencies and assure the wall construction replicates test panel conditions that pass the water penetration test. Submit the complete, certified test report, including supplemental report, to the Contracting Officer prior to start of single-wythe masonry wall construction. Significant changes to materials, proportions, or construction techniques from those used in the passing water penetration test are grounds for performing new tests, at the discretion of the Contracting Officer.

-- End of Section --