PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 MODIFICATION OF REFERENCES
1.4 GENERAL REQUIREMENTS
1.5 DESIGN
 1.5.1 Standards and Loads
 1.5.2 Connections
 1.5.3 Concrete Strength
 1.5.4 Concrete Proportion
 1.5.5 Calculations
 1.5.6 Mix Design
1.6 DELIVERY, STORAGE, AND HANDLING
1.7 STORAGE AND INSPECTION AT MANUFACTURER'S PLANT
1.8 PLANT INSPECTION
1.9 QUALIFICATIONS FOR WALL-PANEL INSTALLER
1.10 CONCRETE SAMPLING AND TESTING
 1.10.1 Test for Concrete Materials
 1.10.2 Concrete Design Mixes
 1.10.3 Quality Control Testing During Panel Fabrication
1.11 QUALITY ASSURANCE
 1.11.1 Wall Panel Drawings
 1.11.2 Design Calculations
 1.11.3 Connection and Embedment Design Calculations
 1.11.4 Mix Designs
 1.11.5 Concrete Wall Panel Surface Finish Sample
 1.11.6 Required Records
 1.11.7 Mock-Up
 1.11.8 Pre-Installation Meeting
1.12 Tolerances

PART 2 PRODUCTS

2.1 PROPERTIES OF CONCRETE
2.2 CONCRETE
 2.2.1 Contractor-Furnished Mix Design
 2.2.2 Exposed-to-View Facing Mixture
 2.2.3 Backing Mixture

2.3 MATERIALS
 2.3.1 Fine Aggregates
 2.3.2 Coarse Aggregate
 2.3.3 Exposed Aggregate
 2.3.4 Cement
 2.3.5 Fly Ash and Pozzolan
 2.3.6 Ground Iron Blast-Furnace Slag
 2.3.7 Admixtures
 2.3.8 Water
 2.3.9 Reinforcement
 2.3.9.1 Reinforcing Bars
 2.3.9.2 Welded Wire Fabric
 2.3.9.3 Supports for Concrete Reinforcement
 2.3.10 Prestressing Strands
 2.3.11 Tie Wire
 2.3.12 Inserts
 2.3.13 Plates, Angles, Anchors and Embedment
 2.3.14 Form Release Agent
 2.3.15 Aggregates for Exposed-to-View Facing
 2.3.16 Portland Cement
 2.3.17 Ground Granulated Blast Furnace (GGBF) Slag
 2.3.18 Air-Entrained Admixtures

2.4 Cast-In Embedded Items and Connectors
 2.4.1 Inserts
 2.4.1.1 Threaded-Type Concrete Inserts
 2.4.1.2 Wedge-Type Concrete Inserts
 2.4.1.3 Slotted-Type Concrete Inserts
 2.4.1.4 Wood Nailer Inserts
 2.4.1.5 Flashing Reglets
 2.4.2 Embedded Plates
 2.4.3 Embedded Attachments
 2.4.3.1 Embedded Wood Nailer
 2.4.3.2 Flashing Reglets
 2.4.4 Connection Devices
 2.4.4.1 Clip Angles
 2.4.4.2 Ferrous Casting Clamps
 2.4.4.3 Threaded Fasteners
 2.4.5 Form Materials

2.5 PANEL FABRICATION
 2.5.1 Formwork and Fabrication Tolerances
 2.5.2 Reinforcement
 2.5.3 Preparation for Placing Concrete
 2.5.4 Concrete Mixing and Conveying
 2.5.4.1 Batch Plant, Mixer, Mixing, and Measuring of Materials
 2.5.4.2 Conveying
 2.5.5 Concrete Placing
 2.5.6 Identification Markings
 2.5.7 Finishing
 2.5.7.1 Unformed Concealed Surfaces (Standard Smooth Finish)
 2.5.7.2 Smooth, Exposed-to-View Surfaces
 2.5.7.3 Exposed Aggregate Finish
 2.5.7.4 Other Surfaces
 2.5.8 Curing
 2.5.9 Repair of Surface Defects
 2.5.9.1 Smooth, Concealed Surfaces
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.9.2</td>
<td>Exposed-to-View Surfaces</td>
</tr>
<tr>
<td>2.5.10</td>
<td>Embedded Accessories</td>
</tr>
<tr>
<td>2.5.11</td>
<td>Stripping</td>
</tr>
<tr>
<td>2.5.12</td>
<td>Forms</td>
</tr>
<tr>
<td>2.5.13</td>
<td>Built-In Anchorage Devices</td>
</tr>
<tr>
<td>2.5.14</td>
<td>Lifting Devices</td>
</tr>
<tr>
<td>2.5.15</td>
<td>Weather Limitations</td>
</tr>
<tr>
<td>2.5.16</td>
<td>Finishing for Formed Surfaces</td>
</tr>
<tr>
<td>2.6</td>
<td>JOINT MATERIALS</td>
</tr>
<tr>
<td>2.7</td>
<td>MISCELLANEOUS ARCHITECTURAL PRECAST CONCRETE SYSTEMS</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Thin Brick Veneer</td>
</tr>
<tr>
<td>2.7.1.1</td>
<td>Storage of Thin Brick</td>
</tr>
<tr>
<td>2.7.1.2</td>
<td>Engineering Considerations</td>
</tr>
<tr>
<td>2.7.1.3</td>
<td>Placing Concrete</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Glass Fiber Reinforced Concrete Panels (GFRC)</td>
</tr>
<tr>
<td>2.7.2.1</td>
<td>Responsibilities</td>
</tr>
</tbody>
</table>

PART 3 EXECUTION

3.1 GENERAL
3.2 EXAMINATION
3.3 INSTALLATION
 3.3.1 Building Framing System
 3.3.2 Placing Panels
 3.3.3 Erection Tolerances
 3.3.4 Joints
 3.3.4.1 JOINT SEALING
 3.3.5 Protection
3.4 ERECTION
3.5 PROTECTION OF WORK
3.6 DEFECTIVE WORK
3.7 CONCRETE INSERTS EMBEDDED IN CAST-IN-PLACE CONCRETE
3.8 CONCRETE STRENGTH AT TIME OF PANEL INSTALLATION
3.9 INSTALLATION TOLERANCES
3.10 PLACING PANELS
3.11 CONNECTIONS TO THE BUILDING FRAMING SYSTEM
3.12 JOINTS AND GASKETS
3.13 PROTECTION
3.14 INSPECTION AND ACCEPTANCE PROVISIONS
 3.14.1 Evaluation of Compressive Strength Tests
 3.14.2 Dimensional Tolerances
 3.14.3 Surface Finish Requirements
 3.14.4 Strength of Panels
 3.14.5 Testing Panels for Strength
 3.14.6 Panels-in-Place
3.15 CLEANING
3.16 SAMPLING AND TESTING
 3.16.1 Product Quality Control
 3.16.1.1 Aggregate Tests
 3.16.1.2 Strength Tests
 3.16.1.3 Changes in Proportions
 3.16.1.4 Strength Test Results
 3.16.2 Rejection
 3.16.3 Field Quality Control
 3.16.3.1 Welded Connection Visual Inspection

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for architectural precast concrete products, that through their finish, shape, color, or texture contribute to a structure’s architectural expression. These products may be custom designed or feature standard shapes. They may be manufactured with conventional mild-steel reinforcement, or they may be pretensioned or posttensioned. These products typically have more stringent requirements for dimensional tolerances, finish variations, and color consistency.

Architectural precast concrete products includes mullions, bollards, urns, railings, sills, copings, benches, planters, pavers, and other types of miscellaneous shapes. Exterior cladding is included. Also included are Glass-Fiber-Reinforced Concrete products that are made by spraying cement/sand slurry reinforced with glass fiber into moulds.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: The panels specified are intended for attachment of the building framing system at each
floor elevation and at the roof elevation. The panels may be provided with built-in anchorage devices for the attachment of thermal insulation blankets to the interior face of the wall panels and for the attachment of metal flashing after the wall panels have been installed.

**
**

Note: Drawings should include a complete design indicating the character of the work to be performed and the following:

1. Location and details of wall panels, showing all dimensions, and size and type of reinforcement.

2. Details of joints between wall panel units, showing sealant or gasket shape, dimensions, and location.

3. Details showing both the location and type of anchorage devices of the panels to the building framing system and the connection of other materials (reglets, insulation nailers, etc.) to the panels. Indicate gravity loads, live loads, dynamic loads, and stresses inherent in the structure for the manufacturer to provide embedded panel anchorage.

4. Locations where flashing reglets are required.

5. Locations of inserts (wedge type, slotted type, etc.) cast into the concrete panels.

6. Location of each type of surface finish, with details of transitions between different types of surface finishes.

**
**

PART 1 GENERAL

1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project.
specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 117 (2010; Errata 2011) Specifications for Tolerances for Concrete Construction and Materials and Commentary

ACI 211.2 (1998; R 2004) Standard Practice for Selecting Proportions for Structural Lightweight Concrete

ACI 214R (2011) Evaluation of Strength Test Results of Concrete

ACI 301 (2010; Errata 2011) Specifications for Structural Concrete

ACI 305.1 (2014) Specification for Hot Weather Concreting

ACI 318 (2014; Errata 2014) Building Code Requirements for Structural Concrete and Commentary

ACI 318M (2011; Errata 2013) Building Code Requirements for Structural Concrete & Commentary

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASCE 7 (2010; Errata 2011; Supp 1 2013) Minimum Design Loads for Buildings and Other Structures

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2010; Errata 2011) Structural Welding Code - Steel
AWS D1.4/D1.4M (2011) Structural Welding Code - Reinforcing Steel

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

AWPA C1 (2003) All Timber Products - Preservative Treatment by Pressure Processes

AWPA C2 (2003) Lumber, Timber, Bridge Ties and Mine Ties - Preservative Treatment by Pressure Processes

ASME INTERNATIONAL (ASME)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2013) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

Los Angeles Machine

ASTM C138/C138M (2014) Standard Test Method for Density ("Unit Weight"), Yield, and Air Content (Gravimetric) of Concrete

ASTM C172/C172M (2014a) Standard Practice for Sampling Freshly Mixed Concrete

ASTM C231/C231M (2014) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

Gillmore Needles

ASTM C289

ASTM C29/C29M

ASTM C31/C31M
(2012) Standard Practice for Making and Curing Concrete Test Specimens in the Field

ASTM C33/C33M

ASTM C39/C39M
(2014a) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens

ASTM C40/C40M
(2011) Standard Test Method for Organic Impurities in Fine Aggregates for Concrete

ASTM C403/C403M

ASTM C42/C42M
(2013) Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete

ASTM C451

ASTM C494/C494M

ASTM C535

ASTM C566

ASTM C595/C595M

ASTM C618
(2012a) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM C70

ASTM C78/C78M
(2012; E 2013) Standard Test Method for Flexural Strength of Concrete (Using
1.2 SUBMITTALS

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in
context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Precast concrete wall panel; G[, [_____]]

[Submit formwork shop drawings and panel elevations detailing the location of embedded brick work.]

[1. Panel Sizes]
[2. Joint Locations]
[3. Joint Widths]
[4. Brick Coursing]
[5. Brick Coursing Alignment Across Panel Joints]
[6. Reveal and False-joint Locations and Dimensions]

[Architect/Engineer review of shop drawings is for general conformance with design concept and project requirements only, and does not imply approval or any variance from the Contract Documents.]

SD-03 Product Data

Cast-in embedded items and connectors; G[, [_____]]

Connection devices; G[, [_____]]
[1. Brick Color chips representing color and size of each brick type to be used.]
[2. Form Liner Samples representing all brick inlay form liners which will be used.]
[3. Bond breaker sample on brick chip representing bond breaker which will be used.]
[4. Printed product data and installation instructions for brick inlay form liner system, and brick.]

SD-04 Samples

Concrete wall panel surface finishing; G[, [_____]]

SD-05 Design Data

Precast concrete wall panel design calculations; G[, [_____]]
Contractor-furnished mix design; G[, [_____]]
Concrete mix design for repair of surface defects; G[, [_____]]
Precast concrete wall panel connection and embedment design calculations; G[, [_____]]

SD-06 Test Reports

Strength tests; G[, [_____]]
Submit commercial testing results in accordance with PCI MNL-117 and as required in paragraph entitled "Sampling and Testing."

SD-07 Certificates

Manufacturer's Qualifications; G[, [_____]]

SD-08 Manufacturer's Instructions

Installation of precast concrete wall panel; G[, [_____]]
Cleaning of wall panel; G[, [_____]]
Include precast concrete wall panel manufacturer's written recommendations for installation and cleaning.

SD-11 Closeout Submittals

Concrete batch ticket information; G[, [_____]]

Calculations
Mix Design
Precast Concrete Manufacturer
Wall-panel Installer
Concrete
1.3 MODIFICATION OF REFERENCES

In the referenced ACI and PCI publications, consider the advisory provisions to be mandatory. Interpret reference to the "Building Official," the "Structural Engineer," and the "Architect/Engineer" to mean the Contracting Officer.

1.4 GENERAL REQUIREMENTS

Precast concrete units must be designed and fabricated by an experienced and certified precast concrete manufacturer. The manufacturer needs to have been regularly and continuously engaged in the manufacture of precast concrete work similar to that indicated on the drawings for at least 3 years. The Contractor must submit a statement detailing the Manufacturer's Qualifications as specified in the Submittals paragraph. Coordinate precast work with the work of other trades.

1.5 DESIGN

1.5.1 Standards and Loads

**
NOTE: Design loads will be shown on the drawings.
Criteria for design loads are contained in ASCE 7 and EI 01S010. The differential temperature of 89 degrees C 160 degrees F is based on extreme values of 40 degrees C 40 degrees F below zero to 49 degrees C
120 degrees F above zero; it should be used for computing volume changes due to temperature variations. Other values, greater or smaller, should be used instead whenever justified by climatic conditions at the jobsite. For in-house design delete all references to design by others.

Precast unit design must conform to ASCE 7, ACI 318M ACI 318 and PCI MNL-122. Indicate design loads for precast concrete on the drawings. A differential temperature of [89] [_____] degrees C [192] [_____] degrees F, between interior and exterior faces of the units, must be considered in the design. Stresses due to restrained volume change caused by shrinkage and temperature differential, handling, transportation and erection must be accounted for in the design.

1.5.2 Connections

Connection of units to other members, or to other units must be of the type and configuration indicated. The design and sizing of connections for all design loads will be completed by the Contractor.

1.5.3 Concrete Strength

Precast concrete units must have a 28-day compressive strength of 34 MPa 5000 psi.

1.5.4 Concrete Proportion

Base the selection of proportions for concrete on the methodology presented in ACI 211.1 for normal weight concrete and ACI 211.2 for lightweight concrete. Develop the concrete proportion using the same type and brand of cement, the same type and gradation of aggregates, and the same type and brand of admixture that will be used in the manufacture of precast concrete units for the project. Do not use calcium chloride in precast concrete and admixtures containing chloride ions, nitrates, or other substances that are corrosive will not be used in prestressed concrete.

1.5.5 Calculations

Calculations for design of members and connections not shown must be made by a professional engineer experienced in the design of precast architectural concrete. Calculation will include the analysis of member for lifting stresses and the sizing of the lifting inserts.

1.5.6 Mix Design

The Contractor must submit the mix design formula giving the maximum nominal coarse aggregate size, the proportions of all ingredients and the type and amount of any admixtures that will be used in the manufacture of each strength and type of concrete, prior to commencing operations. Submit certified copies of laboratory test reports, including mill tests and all other test data, for portland cement, blended cement, pozzolan, ground granulated blast furnace slag, silica fume, and aggregates. The statement must be accompanied by test results from an approved testing laboratory, certifying that the proportions selected will produce concrete of the properties required. Make no substitutions without additional tests to verify that the concrete properties are satisfactory.
1.6 DELIVERY, STORAGE, AND HANDLING

Deliver packaged materials, except for wall panels, to the project site in the original, unbroken packages or containers, each bearing a label clearly identifying manufacturer's name, brand name, weight or volume, and other pertinent information. Store packaged materials, and materials in containers, in a weathertight and dry place until ready for use.

Store products in manufacturer's unopened packaging in dry storage area, with ambient temperature between minus 1 degree C 30 degrees F and 41 degrees C 120 degrees F, until installation.

1.7 STORAGE AND INSPECTION AT MANUFACTURER'S PLANT

Protect precast units temporarily stored at the manufacturer's plant from damage in accordance with [PCI MNL-117 and PCI MNL-122]. Immediately prior to shipment to the jobsite, all precast concrete units must be inspected for quality to insure all precast units conform to the requirements specified. Inspection for quality will include, but will not be limited to, the following elements: color, texture, dimensional tolerances, chipping, cracking, staining, warping and honeycombing. Replace or repair all defective precast concrete units as approved.

1.8 PLANT INSPECTION

[At the option of the Contracting Officer, precast units may be inspected.] [Precast units must be inspected by the QC representative prior to being transported to the job site.] The Contractor is to give notice 14 days prior to the time the units will be available for plant inspection. Neither the exercise nor waiver of inspection at the plant will affect the Government's right to enforce contractual provisions after units are transported or erected.

1.8.1 Quality Certifications

Plants must be certified by the PCI Plant Certification Program for Category [AT] [A1] [G] work, or Architectural Precast Association (APA) certification or National Precast Concrete Association (NPCA). When plants are not currently enrolled in one of the three certification programs listed above then they must provide a product quality control system in accordance with PCI MNL-117 and perform concrete and aggregate quality control testing using an approved, independent commercial testing laboratory.

1.9 QUALIFICATIONS FOR WALL-PANEL INSTALLER

Panels must be installed by an organization experienced in the installation of precast wall panels.

Submit a letter of reference for the installer giving the qualifications of personnel, handling and erection equipment, lists of projects similar to specified work, and other information as may be required by the Contracting Officer.

1.10 CONCRETE SAMPLING AND TESTING

1.10.1 Test for Concrete Materials

**
SECTION 03 45 00 Page 16
Sample and test concrete materials proposed for use in the work as follows:

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>Sampling sieve analysis, calculating fineness modulus</td>
<td>ASTM D75/D75M ASTM C136 ASTM C125</td>
<td>One for each material source and grading size</td>
</tr>
<tr>
<td></td>
<td>Amount of material passing 75 micrometer No. 200 sieve</td>
<td>ASTM C117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of friable particles</td>
<td>ASTM C142/C142M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of organic impurities</td>
<td>ASTM C40/C40M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of coal and lignite</td>
<td>ASTM C123/C123M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnesium sulfate soundness test</td>
<td>ASTM C88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aggregate durability</td>
<td>ASTM D3744/D3744M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific gravity of fine aggregate</td>
<td>ASTM C128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific gravity of course aggregates</td>
<td>ASTM C127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistance to abrasion of small size course aggregate</td>
<td>ASTM C131/C131M or ASTM C535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential reactivity to alkalis</td>
<td>ASTM C289</td>
<td></td>
</tr>
<tr>
<td>MATERIALS</td>
<td>REQUIREMENT</td>
<td>TEST METHOD</td>
<td>NUMBER OF TESTS</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Portland Cement</td>
<td>Sampling</td>
<td>ASTM C183</td>
<td>One for each material source, type and color</td>
</tr>
<tr>
<td>Chemical analysis</td>
<td></td>
<td>ASTM C114</td>
<td></td>
</tr>
<tr>
<td>Fineness</td>
<td></td>
<td>ASTM C115/C115M or ASTM C204</td>
<td></td>
</tr>
<tr>
<td>Autoclave expansion time of setting</td>
<td></td>
<td>ASTM C151/C151M, ASTM C191 or ASTM C266</td>
<td></td>
</tr>
<tr>
<td>Air Content of mortar</td>
<td></td>
<td>ASTM C185</td>
<td></td>
</tr>
<tr>
<td>Compressive strength</td>
<td></td>
<td>ASTM C109/C109M</td>
<td></td>
</tr>
<tr>
<td>Heat of hydration</td>
<td></td>
<td>ASTM C186</td>
<td></td>
</tr>
<tr>
<td>False set</td>
<td></td>
<td>ASTM C451</td>
<td></td>
</tr>
<tr>
<td>Air-entraining admixture using air-entrained concrete made of the proposed concrete materials</td>
<td>Materials for test</td>
<td>ASTM C233/C233M</td>
<td>One set of tests for each type and color of portland cement proposed for use</td>
</tr>
<tr>
<td>Number of specimens</td>
<td></td>
<td>ASTM C233/C233M, Table 1</td>
<td></td>
</tr>
<tr>
<td>Bleeding</td>
<td></td>
<td>ASTM C232/C232M</td>
<td></td>
</tr>
<tr>
<td>Time of setting</td>
<td></td>
<td>ASTM C403/C403M and ASTM C233/C233M</td>
<td></td>
</tr>
<tr>
<td>Compressive strength test specimen</td>
<td></td>
<td>ASTM C192/C192M and ASTM C233/C233M</td>
<td></td>
</tr>
</tbody>
</table>
Compressive strength test at 3, 7 and 28 calendar days

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compressive strength test at 3, 7 and 28 calendar days</td>
<td>ASTM C39/C39M and ASTM C233/C233M</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Water absorption test is a relative measure of the ability of different concretes to resist dirt adhesion, staining from soft aggregates, or other phenomena that may lead to non-uniformity and unsightliness.

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete made of the proposed concrete materials</td>
<td>Water absorption</td>
<td>As specified</td>
<td>Three 100 by 200 mm 4 by 8 inch cylinders or 100 mm 4 inch cube concrete specimens for each type of mixture required</td>
</tr>
</tbody>
</table>

Submit reports for each material sampled and tested prior to the start of work. Reports must contain the project name and number, date, name of Contractor, name of precast wall panel manufacturer, name of concrete testing service, source of concrete aggregates, generic name of aggregate, and values specified.

1.10.2 Concrete Design Mixes

Concrete design mix for concrete, including Exposed-to-View Concrete facing mixture and Backing Concrete mixture, must be determined and tested as follows:

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity and absorption of fine aggregate</td>
<td>ASTM C128</td>
<td>As required for the concrete aggregates</td>
</tr>
<tr>
<td>Specific gravity and absorption of course aggregate</td>
<td>ASTM C127</td>
<td></td>
</tr>
<tr>
<td>REQUIREMENT</td>
<td>TEST METHOD</td>
<td>NUMBER OF TESTS</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Moisture content of both fine and coarse aggregate</td>
<td>ASTM C70 and ASTM C566</td>
<td></td>
</tr>
<tr>
<td>Dry-rodded unit weight of course aggregate</td>
<td>ASTM C29/C29M</td>
<td></td>
</tr>
<tr>
<td>Trial mixes using at least three different water/cement ratios, minimum allowable cement content and maximum allowable slump; all with air-entrainment</td>
<td>ACI 211.1</td>
<td>As required to determine the concrete mix having the properties specified</td>
</tr>
<tr>
<td>Making and curing concrete specimens in the laboratory</td>
<td>ASTM C192/C192M</td>
<td>Two sets of three specimens for each design mix</td>
</tr>
<tr>
<td>Sampling fresh concrete in the laboratory</td>
<td>ASTM C192/C192M</td>
<td>One for each set of design mix specimens</td>
</tr>
<tr>
<td>Slump</td>
<td>ASTM C143/C143M ACI 211.1</td>
<td></td>
</tr>
<tr>
<td>Air Content</td>
<td>ASTM C231/C231M</td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td>ASTM C138/C138M</td>
<td></td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM C39/C39M</td>
<td>Three specimens tested at 7 calendar days and three specimens tested at 28 calendar days</td>
</tr>
</tbody>
</table>

From the results of the tests, plot a curve for each concrete mixture, showing the relationships between water/cement ratios and compressive strengths. Maximum permissible water/cement ratio must be that value not exceeding the maximum water/cement ratio specified, indicated by the curve to produce a design minimum laboratory compressive strength at 28 calendar days not less than that specified.

Submit report of the design mix for both exposed-to-view facing mixture and backing mixture for approval at least 15 calendar days prior to start of fabricating panels. Report is to contain the project name and number, date, name of Contractor, name of precast concrete wall panel manufacturer, name of concrete testing service, use of concrete mixture (facing or backing), source of concrete aggregates for each mixture, manufacturer and brand name of manufactured materials, the exact proportions of each
concrete mix, the concrete properties specified, and the test results for each requirement specified for the concrete design mixes.

1.10.3 Quality Control Testing During Panel Fabrication

Sample and test concrete for quality control during fabrication as follows:

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling fresh concrete</td>
<td>ASTM C172/C172M except modified for slump per ASTM C94/C94M</td>
<td>As required for each test</td>
</tr>
<tr>
<td>Slump test</td>
<td>ASTM C143/C143M</td>
<td>One for each concrete load at point of discharge and one for each set of compressive strength tests</td>
</tr>
<tr>
<td>Air Content by pressure method</td>
<td>ASTM C231/C231M</td>
<td>One for each set of compressive strength tests</td>
</tr>
<tr>
<td>Compressive test specimens</td>
<td>ASTM C31/C31M</td>
<td>One set of six specimens for each Compressive Strength test</td>
</tr>
</tbody>
</table>

Compression test specimens may be either standard 150 by 300 millimeter 6 by 12 inch cylinders or 100 millimeter 4-inch cubes. Cubes may be molded individually or cut from slabs. Preparation and testing of cube specimens must be as nearly consistent with the test methods specified as possible, with the exception that the concrete will be placed in a single layer.

Curing of compression test specimens must be the same as the curing method used for the precast concrete wall panels until panels are stripped of forms and then standard moist cure will continue.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>NUMBER OF TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete temperature</td>
<td></td>
<td>Each time a set of compression test specimens is made</td>
</tr>
</tbody>
</table>
Compressive strength tests according to ASTM C39/C39M involve:

- One set of facing strength tests mix and one set of backing mix for every ten panels or fraction thereof cast in any one day; two specimens in each set tested at 7 calendar days; three specimens in each set tested at 28 calendar days, and one specimen in each set retained in reserve for testing if required.

Submit test reports on the same day that tests are made.

Test results that fail to meet the value for any concrete property specified in "Quality of Concrete" must be noted in the report.

Reports for Compressive Strength tests need to contain the following information:
- Project name and number
- Date of concrete placement
- Name of Contractor
- Name of precast concrete wall panel manufacturer
- Name of concrete testing service
- Panel identification letter and number
- Use of concrete mixture (facing or backing)
- Design compressive strength at 28 calendar days
- Concrete-mix proportions and materials
- Compressive breaking strength and type of break.

If 100 millimeter 4-inch cubes are used for compressive strength specimens, average strength of the cubes at any test age must be multiplied by the factor of 0.8 to arrive at an estimate of the corresponding 150 by 300 millimeter 6 by 12 inch cylinder strength. Report both of these values.

1.11 QUALITY ASSURANCE

1.11.1 Wall Panel Drawings

a. Wall panel dimensions, cross-section, and edge details; location, size, and type of reinforcement, including reinforcement necessary for safe handling and erection of panels. Comply with ACI SP-66.

b. Layout, dimensions, and identification of each panel, corresponding to installation sequence.

c. Setting drawings, instructions, and directions for installation of concrete inserts.

d. Location and details of anchorage devices and lifting devices embedded in panels, and connection details to building framing system.

1.11.2 Design Calculations

Submit design calculations prepared and sealed by a registered professional engineer demonstrating compliance with indicated loading conditions.

1.11.3 Connection and Embedment Design Calculations

Submit design calculations prepared and sealed by a professional engineer demonstrating compliance with the indicating connection and embedment details.
1.11.4 Mix Designs

Sixty days minimum prior to concrete placement, submit a mix design for each strength and type of concrete. Include a complete list of materials including type; brand; source and amount of cement[, fly ash, pozzolan, ground slag,] and admixtures; and applicable reference specifications.

1.11.5 Concrete Wall Panel Surface Finish Sample

Submit a concrete wall panel sample 300 mm by 300 mm 12 inches by 12 inches by approximately 40 mm 1 1/2 inches in thickness, to illustrate quality, color, and texture of both exposed-to-view surface finish and finish of panel surfaces that will be concealed by other construction. [Obtain approval prior to submission of sample panels.]

1.11.6 Required Records

ASTM C94/C94M. Submit mandatory batch ticket information for each load of ready-mixed concrete.

1.11.7 Mock-Up

Apply specified products to determine acceptability of appearance and optimum coverage rate required for application

1. Finish areas designated by Architect
2. Apply in accordance with manufacturer's instructions.
3. After materials have cured, water test surface to determine that sufficient water repellent has been applied.
4. Do not proceed with remaining work until mock-up is approved by Architect.

[Job Mock Up Panel: Minimum 1.2 meters 4 feet by 1.2 meters 4 feet

][1. Incorporate edge, reveal, and brick coursing detail as shown on drawings.
][2. Utilize full range of brick sizes, variance of brick size, general color of brick and variance in color and texture of brick.
][3. Show clean, pressure washed brick and concrete surface
][4. Utilize full range of color of concrete mortar joints
][5. Maintain Mock Up for comparison with finished work

] Provide mock-up to establish that proposed materials and construction techniques provide acceptable visual effect. Materials used for mock-up should be those proposed for actual construction; retain samples of cement and aggregates used.

Provide mock-up sections of building and structures which typify the most difficult areas to build.

Do not proceed with remaining work until workmanship, color, and detail are approved by Architect. Modify mock-up area as required to produce acceptable work. After approval by Architect, transport mock-up to job-site and erect where directed by [Architect] [______].

1.11.8 Pre-Installation Meeting

Hold a meeting at the job site with representative of the manufacturer and
the applicator prior to application of water repellents. Notify the Owner and the Architect at least 3 days in advance of the time of the meeting.

1.12 Tolerances

Dimensions of the finished panel, at the time of erection in the structure, must conform to the tolerances for precast, non-prestressed elements in ACI 117, unless otherwise specified by the Architect.

PART 2 PRODUCTS

2.1 PROPERTIES OF CONCRETE

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design compressive strength at 28 calendar days, 150 by 300 millimeter cylinders</td>
<td>Not less than 34,500 kilopascal</td>
</tr>
<tr>
<td>Maximum aggregate size</td>
<td>As specified</td>
</tr>
<tr>
<td>Maximum water/cement ratio</td>
<td>16 liter per 43 kilogram sack of cement</td>
</tr>
<tr>
<td>Minimum cement content</td>
<td>7.5 43 kilogram sacks of cement per 0.76 cubic meter</td>
</tr>
<tr>
<td>Slump at point of concrete discharge</td>
<td>Not to exceed 50 millimeter</td>
</tr>
<tr>
<td>Total air content by volume at point of concrete discharge</td>
<td>Not less than 4 percent nor more than 6 percent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design compressive strength at 28 calendar days, 6 by 12 inch cylinders</td>
<td>Not less than 5,000 psi</td>
</tr>
<tr>
<td>Maximum aggregate size</td>
<td>As specified</td>
</tr>
<tr>
<td>Maximum water/cement ratio</td>
<td>4.25 gallons per 94-pound sack of cement</td>
</tr>
<tr>
<td>Minimum cement content</td>
<td>7.5 94-pound sacks sacks of cement per 0.76 cubic yard</td>
</tr>
<tr>
<td>Slump at point of concrete discharge</td>
<td>Not to exceed 2 inches</td>
</tr>
<tr>
<td>Total air content by volume at point of concrete discharge</td>
<td>Not less than 4 percent nor more than 6 percent</td>
</tr>
</tbody>
</table>

2.2 CONCRETE

2.2.1 Contractor-Furnished Mix Design

**
SECTION 03 45 00 Page 24
NOTE: If gap-graded or one size architectural aggregates are used in a high coarse aggregate mix, delete the air percentage requirements and use the second bracketed sentence.

ACI 211.1 and ACI 301. Concrete must have a 28-day compressive strength of 28 MPa [4000] [_____] psi. [Air content of plastic concrete must be between 4 and 6 percent air by volume.] [Provide a dosage of air entraining agent which will produce 19 plus or minus 3 percent air in a 1 to 4 by weight standard sand mortar in accordance ASTM C185.]

[2.2.2 Exposed-to-View Facing Mixture]

Provide aggregates for exposed-to-view facing mixture; white, gray, or buff portland cement or a blend of two or more portland cements; [air-entraining admixture;] and water. Provide exact proportions of facing mixture to produce concrete having the specified properties and capable of obtaining the approved surface color and finish.

[2.2.3 Backing Mixture]

Provide the approved mix design.

2.3 MATERIALS

2.3.1 Fine Aggregates

NOTE: Choose appropriate gradation based upon use of concrete. Where concrete is for back-up and separate facing aggregate is used, a gradation or maximum aggregate size may be specified.

ASTM C33/C33M. The optional method of reducing the No. 50 and No. 100 sieve aggregates does not apply. The restriction to use only fine aggregates that do not contain any materials that are deleteriously reactive with alkalis in cement does apply.

2.3.2 Coarse Aggregate

NOTE: Choose appropriate gradation based upon use of concrete. Where concrete is for back-up and separate facing aggregate is used, a gradation or maximum aggregate size may be specified. Class 5S is for exposed architectural concrete.

ASTM C33/C33M, Size No. [57] [67], Class 5S. The restriction to use only coarse aggregates that do not contain any materials that are deleteriously reactive with alkalis in cement does apply. Aggregate must not contain slag or crushed concrete.

2.3.3 Exposed Aggregate

NOTE: Choose appropriate gradation based upon use
of concrete. Where concrete is for back-up and separate facing aggregate is used, a gradation or maximum aggregate size may be specified.

In addition to the above, facing mixture aggregate, and aggregate for homogeneous panels with exposed aggregate finish, will be [gravel] [crushed gravel] [crushed stone] of size and color to produce exposed surfaces to match the color and texture of the sample on file with the Contracting Officer.

2.3.4 Cement

NOTE: Acceptable types of cement are:

<table>
<thead>
<tr>
<th>ASTM C150/C150M</th>
<th>[ASTM C595/C595M] Blended</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Type IP or IS</td>
<td>For general use in construction.</td>
</tr>
<tr>
<td>Type II</td>
<td>Type IP(MS) or Type IS(MS)</td>
<td>For general use in construction where concrete is exposed to moderate sulfate action or where moderate heat of hydration is required. ASTM C595/C595M (blended hydraulic cements): add the suffix MS or MH where either moderate sulfate resistance or moderate heat of hydration, respectively, is required.</td>
</tr>
</tbody>
</table>

Specify either a tricalcium aluminate content of 5 percent maximum or 50 percent ground iron blast furnace slag with 50 percent portland cement or 25 percent pozzolan with 75 percent Type II portland cement when structure is within a saltwater spray range of 8 m 25 feet or within a horizontal distance of 30 m 100 feet. Require cement to meet chemical requirements of ASTM C150/C150M, Table 1A, when using alkali-reactive aggregates.

ASTM C150/C150M, Type [I or II] [_____] [or ASTM C595/C595M, Type [IP(MS) or IS(MS)]] [_____] blended cement except as modified herein. The blended cement must consist of a mixture of ASTM C150/C150M cement and one of the following materials: ASTM C618 pozzolan or fly ash, or ASTM C989/C989M ground iron blast furnace slag. The pozzolan or fly ash content can not exceed 25 percent, and ground slag can not exceed 50 percent, by weight of the total cementitious material. For exposed concrete, use one manufacturer for each type of cement[, pozzolan, fly ash, and ground slag].

2.3.5 Fly Ash and Pozzolan

SECTION 03 45 00 Page 26
NOTE: Fly ash and slag cement may produce uneven discoloration of the concrete during the early stages of construction, depending upon the type of curing provided. Fly ash or pozzolan meeting the specified test results, which are more stringent than ASTM C618, should provide acceptable results, but it is recommended that fly ash, pozzolan, and ground slag not be permitted where appearance is an important factor. Fly ash or pozzolan should not be used in panels where light colored concrete is planned without first checking with the pigment manufacturer.

ASTM C618, Type N, F, or C, except that the maximum allowable loss on ignition will be 6 percent for Type N and F. Add with cement.

2.3.6 Ground Iron Blast-Furnace Slag

ASTM C989/C989M, Grade 100 or 120.

2.3.7 Admixtures

ASTM C260/C260M for air-entraining admixtures. Other admixtures: ASTM C494/C494M.[Certify that admixtures are free of chlorides.]

2.3.8 Water

Fresh, clean, and potable.

2.3.9 Reinforcement

All exposed steel must be phosphate treated, primed, and coated to prevent rust.

SECTION 03 45 00 Page 27
2.3.9.2 Welded Wire Fabric

ASTM A1064/A1064M.

2.3.9.3 Supports for Concrete Reinforcement

Include bolsters, chairs, spacers, and other devices necessary for proper
spacing, supporting, and fastening in place.

a. Supports: ASTM A615/A615M, wire-type reinforcing bars and welded
wire fabric.

b. Legs of supports in contact with formwork: Stainless steel,
ASTM A167, Type 302 or Type 304.

2.3.10 Prestressing Strands

**
NOTE: This paragraph will be retained only when
prestressed units are permitted or required.
**

Prestressing strands need to conform to ASTM A416/A416M.

2.3.11 Tie Wire

Tie wire must be soft monel or 18-8 stainless steel.

2.3.12 Inserts

Inserts will be manufacturer's standard, suited for the application.

2.3.13 Plates, Angles, Anchors and Embedment

Material will be as specified in PCI MNL-117. Coat steel items, other than
stainless, with a rust-inhibiting paint or provide hot-dip galvanized
steel. Steel items, including items embedded in concrete, must be either
stainless steel or hot dip galvanized steel.

2.3.14 Form Release Agent

Release agent must be manufacturer's standard non-staining type.

2.3.15 Aggregates for Exposed-to-View Facing

**
NOTE: Aggregates for exposed-to-view facing mixture
may be natural mineral particles, natural building
stone particles, or combinations thereof, or
synthetic materials such as glass or plastic;
natural aggregates may be crushed or gravel.

Delete the following paragraph when crushed natural
aggregate is not required by the project. Specify
the mineral or rock generic name, color, particle
shape, size range of particles, and other
information relative to the appearance of the
exposed-to-view finish surface as applicable to the
project.

SECTION 03 45 00 Page 28
Crush coarse aggregate by a means that will produce material of cubical shape with a minimum of elongated, thin, or partially fractured particles. Material or crushing methods that produce particles classified by petrographic examination as being weak, highly fractured or somewhat friable, or both, in excess of 16 percent of the particles in any whole sample will be rejected. Material for coarse aggregate must be free of substances that change color on oxidation. Obtain material used for the work from the same basic source and stratum. Quarry material to produce a uniformly colored aggregate that does not change color upon weathering. During quarrying operations, the uniformity of rock face color must be verified by periodically comparing the rock face color to the approved coarse aggregate sample.

NOTE: Revise the following paragraph when fine white-quartz aggregate is not required by the project.

Fine aggregate will be white quartz natural sand or stone screenings, or manufactured sand produced from white quartz. Aggregate must be free of substances that change color on oxidation. Color must conform to the approved sample.

2.3.16 Portland Cement

NOTE: Ground granulated blast furnace slag is one of the materials listed in the EPA’s Comprehensive Procurement Guidelines (CPG) (http://www.epa.gov/cpg/). If the Architect/Engineer determines that use of certain materials meeting the CPG content standards and guidelines would result in inadequate competition, do not meet quality/ performance specifications, are available at an unreasonable price or are not available within a reasonable time frame, the Architect/Engineer may submit written justification and supporting documentation for not procuring designated items containing recovered material. Written justification may be submitted on a Request for Waiver Form to the NASA Environmental Program Manager for approval. The Request for Waiver Form is located in the NASA Procedures and Guidelines (NPG 8830.1) (http://nodis3.gsfc.nasa.gov).

Portland cement must conform to ASTM C150/C150M, Type [____].

Blended hydraulic cement must conform to ASTM C595/C595M, Type [____].

Use one brand and type of cement for formed concrete having exposed-to-view finished surfaces.

2.3.17 Ground Granulated Blast Furnace (GGBF) Slag
NOTE: Ground granulated blast furnace slag is one of the materials listed in the EPA’s Comprehensive Procurement Guidelines (CPG) (http://www.epa.gov/cpg/). If the Architect/Engineer determines that use of certain materials meeting the CPG content standards and guidelines would result in inadequate competition, do not meet quality/ performance specifications, are available at an unreasonable price or are not available within a reasonable time frame, the Architect/Engineer may submit written justification and supporting documentation for not procuring designated items containing recovered material. Written justification may be submitted on a Request for Waiver Form to the NASA Environmental Program Manager for approval. The Request for Waiver Form is located in the NASA Procedures and Guidelines (NPG 8830.1) (http://nodis3.gsfc.nasa.gov).

GGBF slag [is required] [used] as an admixture [and] must conform to ASTM C989/C989M, Grade [120] with between 25 to 50 percent maximum cement replacement by weight.

2.3.18 Air-Entrained Admixtures

Admixture must contain no sodium chloride or nitrates and will conform to ASTM C260/C260M.

2.4 Cast-In Embedded Items and Connectors

Design structural embedded anchorage and connections to panels to withstand gravity loads, live loads, dynamic loads, any volume change stresses inherent in the structure, and loads indicated.

2.4.1 Inserts

2.4.1.1 Threaded-Type Concrete Inserts

ASTM A47/A47M, Grade 22010 Grade 32510 or 35018, or may be medium strength cast steel conforming to ASTM A27/A27M, Grade 415-205 Grade U-60-30. Provide [galvanized] ferrous casting having enlarged base with two nailing lugs minimum length less than the thickness of panel less 20 mm 3/4 inch, and internally threaded to receive 20 mm 3/4 inch diameter machine bolt. Ferrous castings must be ferritic malleable iron. [Provide inserts hot-dip galvanized after fabrication in accordance with ASTM A153/A153M.]

2.4.1.2 Wedge-Type Concrete Inserts

Provide galvanized, box-type ferrous castings with integral anchor loop at back of box to accept 20 mm 3/4 inch diameter bolts having special wedge-shaped head. Provide ferrous castings[ASTM A47/A47M, Grade 22010, Grade 32510 or 35018, ferritic malleable iron] [or] [ASTM A27/A27M, Grade 415-205, Grade U-60-30, medium-strength cast steel]. [Provide inserts hot-dip galvanized after fabrication in accordance with ASTM A153/A153M.]

2.4.1.3 Slotted-Type Concrete Inserts

Provide pressed steel plate, welded construction, box type with slot to
receive 20 mm 3/4 inch diameter square head bolt, and provide lateral
adjustment of bolt. Length of insert body, less anchorage lugs, must be
110 mm 4 1/2 inches minimum. Provide insert with knockout cover. Steel
plate must be 3 mm 1/8 inch minimum thickness, ASTM A283/A283M, Grade C.
[Provide inserts hot-dip galvanized after fabrication in accordance with
ASTM A153/A153M.]

2.4.1.4 Wood Nailer Inserts

**
NOTE: Location and size of wood nailer inserts must
be indicated.
**

Inserts will be kiln-dried "standard" grade Douglas fir or "No. 2" grade
southern pine, surfaced 4 sides, and sized as indicated. Pressure treat
wood with an approved wood preservative.

2.4.1.5 Flashing Reglets

**
NOTE: Location of flashing reglets embedded in
precast-concrete panels must be indicated.
**

Reglets must be sheet metal open-type with continuous groove not less than
30 millimeter 1-1/8 inches deep by 5 millimeter 3/16-inch wide at opening
and sloped upward, designed to anchor snap-lock counter flashing.

**
NOTE: Delete the following paragraphs if not
applicable to the project.

When visible staining from the flashing reglets can
occur, corrosion-resisting chromium-nickel steel
only must be specified.

When the wall panels will be subjected to a sea
cost atmosphere, galvanized carbon steel flashing
reglets must not be specified.
**

Metal must be minimum 0.28 millimeter 0.011-inch thick conforming to
ASTM A167, Type 302 or 304, No. 1 finish, soft temper.

Metal must be copper strip weighing a minimum of 4.8 kilogram per square
meter 16 ounces per square foot, and conforming to ASTM B370, cold-rolled
temper.

Metal is to be 0.55 millimeter 26-gage galvanized steel sheet conforming to

2.4.2 Embedded Plates

ASTM A36/A36M, [galvanized] ferrous metal plate connectors for attachment
to the structural framing using manufacturer standard construction
procedures. Headed studs will use 400 MPa 60,000 psi steel with
construction conforming to AWS D1.1/D1.1M, Type B. Deformed bar anchors
must conform to ASTM A1064/A1064M. [Provide embedded anchors galvanized
after fabrication in accordance with ASTM A153/A153M].

2.4.3 Embedded Attachments

2.4.3.1 Embedded Wood Nailer

Kiln-dried Standard Grade Douglas Fir or No. 2 Grade Southern Pine. Surface four sides. Treat with waterborne pressure-preservative in accordance with AWPA C1 and AWPA C2. All wood needs to be air or kiln dried after treatment. Verify specific treatments by the report of an approved independent inspection agency. The AWPA C1 and AWPA C2 Quality Mark "C1" and "C2" on each piece will be accepted, in lieu of inspection reports, as evidence of compliance with applicable AWPA treatment standards.

2.4.3.2 Flashing Reglets

**
NOTE: When visible staining from the flashing reglet can occur, chromium-nickel stainless steel should be specified. When the wall panels will be subjected to a coastal salt atmosphere, galvanized carbon steel flashing reglets should be used with care to prevent visible staining.
**

Fabricate of sheet metal, open-type with continuous groove 30 mm 1 1/8 inches deep minimum by 5 mm 3/16 inch wide at opening and sloped upward at 45 degrees. Top surface will have toothed lip section to anchor upturned edge of metal snap-lock counter flashing when inserted. [Sheet metal must be stainless steel, 0.28 mm 0.011 inch minimum thickness, ASTM A167, Type 302 or Type 304, Number 2D finish, soft temper.] [Sheet metal will be copper strip for building construction, weight 4.8 kg per square meter 16 ounce per square foot minimum, ASTM B370, cold-rolled temper.] [Sheet metal must be 0.5 mm 0.0197 inch minimum thickness (26 gage), galvanized carbon steel sheet, ASTM A653/A653M, Coating Designation Z275 G90.]

2.4.4 Connection Devices

2.4.4.1 Clip Angles

ASTM A36/A36M steel, galvanized after fabrication in accordance with ASTM A153/A153M.

2.4.4.2 Ferrous Casting Clamps

ASTM A47/A47M, Grade 22010, Grade 32510 or Grade 35018 malleable iron or cast steel, or ASTM A27/A27M, Grade 415-205 Grade U-60-30, cast steel casting, hot-dip galvanized in accordance with ASTM A153/A153M.

2.4.4.3 Threaded Fasteners

Provide galvanized machine bolts, washers and, when required, nuts.

b. Washers: ASME B18.21.1, medium or heavy lock-spring washers.

2.4.5 Form Materials

Provide forms and form-facing materials of wood, metal, plastic, or other approved material to produce concrete having the specified finish. Construct forms mortar-tight and of sufficient strength to withstand all pressures due to concrete placing operations and temperature changes within the specified fabrication tolerances.

2.5 PANEL FABRICATION

2.5.1 Formwork and Fabrication Tolerances

Provide metal or wood forms. Brace and stiffen against deformation. Provide form liners where required to produce indicated finish. Provide dimensional tolerances as follows:

<table>
<thead>
<tr>
<th>Overall panel dimensions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m</td>
</tr>
<tr>
<td>3 to 6 m</td>
</tr>
<tr>
<td>6 m</td>
</tr>
<tr>
<td>Thickness:</td>
</tr>
<tr>
<td>Angular deviation of sides:</td>
</tr>
<tr>
<td>Deviation from square (difference in length of two diagonals): Not to exceed 0.1 percent, 6 mm</td>
</tr>
<tr>
<td>Size and location of openings within one unit:</td>
</tr>
<tr>
<td>Local smoothness (deviation from a true plane):</td>
</tr>
<tr>
<td>Bowing (convex or concave): Length of bow/480 (0.2 percent), with a maximum of 15 mm</td>
</tr>
<tr>
<td>Position of reinforcement: Within 6 mm of indicated position</td>
</tr>
<tr>
<td>Position of anchorage devices: Plus or minus 12 mm</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Position of pick-up devices: Plus or minus 75 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall panel dimensions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 feet or less</td>
</tr>
<tr>
<td>Plus 1/8 inch, minus zero</td>
</tr>
<tr>
<td>10 to 20 feet</td>
</tr>
<tr>
<td>Plus or minus 1/8 inch</td>
</tr>
<tr>
<td>20 feet or more</td>
</tr>
<tr>
<td>Plus or minus 3/16 inch</td>
</tr>
</tbody>
</table>

| Thickness: Plus 1/4 inch, minus 1/8 inch |
| Angular deviation of sides: Plus or minus one percent, 1/16 inch maximum |

| Deviation from square (difference in length of two diagonals): Not to exceed 0.1 percent, 1/4 inch maximum |
| Size and location of openings within one unit: Plus or minus 1/4 inch |
| Local smoothness (deviation from a true plane): Plus or minus 0.2 percent |

| Bowing (convex or concave): Length of bow/480 (0.2 percent), with a maximum of 5/8 inch |
| Position of reinforcement: Within 1/4 inch of indicated position |
| Position of anchorage devices: Plus or minus 1/2 inch |
| Position of pick-up devices: Plus or minus 3 inches |

2.5.2 Reinforcement

ACI 301. Place reinforcing bars and welded wire fabric. Secure in position with tie wires, bar supports, and spacers.

2.5.3 Preparation for Placing Concrete

Remove hardened concrete, excess form parting compound, standing water, ice, snow, or other deleterious substances from form interiors and reinforcement before concrete placement. Secure reinforcement and embedded items.
2.5.4 Concrete Mixing and Conveying

2.5.4.1 Batch Plant, Mixer, Mixing, and Measuring of Materials

ASTM C94/C94M.

2.5.4.2 Conveying

Prevent segregation and loss of materials.

2.5.5 Concrete Placing

ACI 304R. Deposit concrete in the forms continuously or in layers of such thickness that no concrete will be placed on concrete which has hardened sufficiently to cause formation of seams or planes of weakness within the precast concrete wall panel. Place concrete at a constant temperature of between 10 and 32 degrees C 50 and 90 degrees F throughout fabrication of each panel. Make temperature of forms or molds the same as or close to the concrete temperature. For hot or cold weather, use methods recommended by ACI 305R and ACI 306.1. Vibrate and consolidate concrete to prevent segregation and to produce a high-density concrete free of honeycomb and rock pockets. When specified, the exposed-to-view facing mixture is required to be a minimum thickness of 20 mm 3/4 inches. Place backing mixture before facing mixture attains initial set.

2.5.6 Identification Markings

Permanently mark each panel to indicate pick-up points, location, orientation in the building, and date of casting. Identification markings need to correlate with approved detail drawings. Do not locate in exposed-to-view finished surfaces.

2.5.7 Finishing

2.5.7.1 Unformed Concealed Surfaces (Standard Smooth Finish)

Provide a trowel finish. Level surface with a straightedge, and strike off. After surface water has disappeared, float and trowel surface. Provide smooth finished surface, free of trowel marks, and uniform in texture and appearance.

2.5.7.2 Smooth, Exposed-to-View Surfaces

Provide a standard smooth finish to all exposed-to-view surfaces of panels, unless otherwise indicated. Provide a concrete surface having the texture imparted by a steel form or other approved smooth surfaces form-facing material.

2.5.7.3 Exposed Aggregate Finish

Provide for exposed-to-view surfaces of panels, including chamfers, edges, recesses, and projections, unless otherwise indicated. Provide standard smooth finish with outer skin of mortar removed, before concrete has hardened, and exposing coarse aggregate. A chemical retarder may be used on exposed face to facilitate removal of mortar. Match finish of the approved surface finish sample. Expose aggregates as soon after concrete placing as practicable [by wire brushing, sand blasting, or bush hammering] [or] [by washing the concrete surface with a diluted solution of muriatic acid to thoroughly clean exposed aggregate. Rinse concrete surface with
fresh, clean water to remove traces of acid.]

2.5.7.4 Other Surfaces

Surfaces of precast units not exposed to view or not otherwise indicated to be finished are to be finished in accordance with Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.

2.5.8 Curing

Provide moist or steam curing or curing compound. Do not remove panel from forms; prevent moisture loss and maintain 10 degrees C 50 degrees F minimum for at least 24 hours after finishing. Maintain panels in a surface damp condition at 10 degrees C 50 degrees F minimum until concrete has attained 75 percent minimum of the design compressive strength. [Do not use steam curing with wood forms or in connection with chemically retarded exposed aggregate surfaces].

2.5.9 Repair of Surface Defects

Cut out defective areas to solid concrete, with edges of cuts perpendicular to the surface of the concrete, and clean thoroughly. Dampen area to be patched and brush-coat with nonshrink grout or bonding agent. Patch the surface in accordance with procedures previously submitted by the Contractor and approved by the Contracting Officer. Where exposed to view, the patches, when dry, needs to be indistinguishable from the surrounding surfaces.

2.5.9.1 Smooth, Concealed Surfaces

Acceptable defective area will be limited to holes left by rods and other temporary inserts, and to honeycomb or rock pockets of 6 mm 1/4 inch diameter maximum. Remove fins and other projections on the surfaces.

2.5.9.2 Exposed-to-View Surfaces

The combined area of acceptable defective areas must not exceed 0.2 percent of the exposed-to-view surface area and will be limited to holes of 6 mm 1/4 inch diameter maximum.

2.5.10 Embedded Accessories

Furnish and install anchors, inserts, lifting devices, and other accessories which are to be embedded in the precast units in accordance with the approved detail drawings. Embedded items must be accurately positioned in their designed location, and have sufficient anchorage and embedment to satisfy design requirements.

2.5.11 Stripping

Do not remove precast concrete units from forms until units develop sufficient strength to safely strip the formwork and to remove the precast concrete units from the forms to prevent damage to the units from overstress or chipping.

2.5.12 Forms

**

NOTE: Precast concrete wall panel dimensions, cross
sections, and details of edges, sills, soffits, and reveals, as required by the project, must be indicated.

Forms and facing materials must be wood, metal, plastic, or other approved material that is non-reactive with concrete. Completed panels must conform to the shapes, lines, and dimensions indicated, within the limits of the specified fabrication tolerances.

2.5.13 Built-In Anchorage Devices

NOTE: Anchorage devices to be embedded in the panels must be indicated. Anchorage devices include threaded concrete inserts for bolted connections; wood nailers to receive thermal insulation that will be applied to the panel; and flashing reglets to receive sheetmetal counter flashing.

Accurately position and securely anchor all anchorage devices. Openings in anchorage devices must be filled temporarily to prevent entry of concrete.

2.5.14 Lifting Devices

Lifting devices must be provided, and designed for a safety factor of 4, which includes 100 percent impact. Do not use brittle material.

2.5.15 Weather Limitations

Do not place concrete when the temperature of the atmosphere is below 5 degrees C (40 degrees F) or during rain, sleet, or snow unless adequate protection is provided. Protection during inclement weather must prevent entry of rain, sleet, or snow into the forms or into the fresh concrete.

2.5.16 Finishing for Formed Surfaces

Prior to panel fabrication, three samples of Exposed-to-View Surface Finish (300 by 300 millimeter) (12 by 12 inches), and Finish Aggregate for exposed-to-view facing material is to be provided by the Contractor.

After approval of the surface, Contractor must provide one full size sample Wall Panel. Approved sample may be used in construction when properly identified.

Upon removal of forms, repair and patch defective areas. Where the finished surface will be exposed to view, the combined area of defective areas must not exceed 0.2 percent of the surface and will be limited to honeycomb or rock pockets not deep enough to expose the reinforcement. Where the finished surface will be concealed by other construction, defective areas are limited to holes left by the rods and other temporary inserts and honeycomb or rock pockets not deep enough to expose the reinforcement. Defective areas must be cut out to solid concrete, cleaned, and patched with grout. Where concrete surface will be exposed to view, the patches, when dry, must be indistinguishable from the surrounding surfaces.
NOTE: Delete the following paragraph, and specify the required finish or finishes when an exposed-aggregate finish is not required for exposed-to-view panel surfaces. Other finishes include textured form finishes, sculptured inserts, rubbed finishes, and combinations thereof; such finishes may require the specified exposed-to-view facing mixture.

It is recommended that a sample of the required exposed-to-view finish be on display where it may be seen by bidders during the bidding period.

Exposed-aggregate finish must match the finish of the approved sample. Aggregates in exposed-to-view surfaces will be exposed as soon after concrete placing as practical by power sanders, wire brushes, or other acceptable methods. Give surfaces one or more washings with a dilute solution of muriatic acid, then washed with fresh, clean water to remove all traces of the acid.

2.6 JOINT MATERIALS

NOTE: Cross sections of gaskets with dimensions must be indicated.

Gasket must be elastomeric material, premolded to cross section indicated.

Material must be a vulcanized closed-cell expanded chloroprene conforming to ASTM D1056, Grade No. SCE 42, with the following additional properties:

Brittleness temperature will be minus 5 degrees C 40 degrees F when tested in accordance with ASTM D746.

Flammability resistance needs to be self-extinguishing when tested in accordance with ASTM D635.

Resistance to ozone must be "no cracks" after exposure of a sample, at 20 percent elongation, to an ozone concentration of 100 parts per million of air by volume in air for 100 hours at 40 degrees C 104 degrees F when tested in accordance with ASTM D1149.

2.7 MISCELLANEOUS ARCHITECTURAL PRECAST CONCRETE SYSTEMS

2.7.1 Thin Brick Veneer

As the precast requirements for thin brick tolerances are stricter than what is acceptable in laid-up masonry, more care is often taken in the manufacturing process to produce a quality thin brick.

ASTM International has issued a standard specification for "Thin Brick Veneer Units Made from Clay or Shale." This specification, identified as Designation: ASTM C1088, addresses such product dynamics as absorption, warpage, freeze/thaw, weight loss, durability, and size dimensions.

As with face brick, thin brick shades can vary substantially within any color selection. Because it is a baked, or kilned, product these
variations of color are inevitable and have been part of the nature of brick for centuries.

Thin brick sample boards offer a general example of available colors and finishes.

A mock up panel of at least sixteen square feet is also recommended. Often, these mock up panels must be produced prior to manufacture of the brick, so it must be understood that they are only a 'close' representation of the actual product. It is also important to use the same method of cleaning and sealing of the brick that will be used in production. Waxes, acids, and sealers may have a slight impact on color and shade.

2.7.1.1 Storage of Thin Brick

Thin brick is generally packed in cartons, palletized, and wrapped in protective plastic for transportation. The brick itself is relatively impervious to the elements. However the protective coatings that are often applied to the face of the brick may weather or age.

It is advisable to protect the brick from extreme heat until it is installed and cast. In addition, excessive dust and dirt may affect the brick's ability to bond to the concrete properly. Care should be taken to keep the brick covered and protected from the sun prior to its installation.

2.7.1.2 Engineering Considerations

1. Pullout tests
2. Pre-stress or post tensioning, (deflection criteria)
3. Freeze thaw tests
4. Module openings, corners & quirk joints

2.7.1.3 Placing Concrete

1. Concrete Placement

 When placing concrete, take care not to create currents with the concrete that could disturb the brick. Placement should be done in such a way that there is little or no forceful impact of concrete onto the brick.

2. Self consolidating concrete

 Self consolidating, sometimes called 'self compacting' or 'self leveling' concrete, is considered the easiest to place. It requires little to no vibration, and rarely disturbs the brick.

3. Vibration

 Consolidating the concrete through vibration rarely causes brick to become dislodged from the liner. Brick will not 'float' into the concrete under normal conditions.

 Do not lay the vibrator horizontal and drag it into, or along the surface of, the concrete. When the vibrator is properly inserted the energy affects a broader area and does not induce strong
concentrated currents that may tilt brick.

4. Re-bar chairs

Adhere to rule of thumb of minimum of 1.5 times the diameter of the re-bar from the surface to the steel (surface is back of brick).

5. Slump of concrete

It is not necessary to adjust the slump from the normal setting in order to accommodate the thin brick.

2.7.2 Glass Fiber Reinforced Concrete Panels (GFRC)

Glass fiber reinforced concrete (GFRC) is the term applied to products manufactured using a cement/aggregate slurry reinforced throughout with alkali resistant glass fibers.

GFRC does not consist of a single composition, but can be manufactured using different combinations of materials to meet the required properties. Mix composition, degree of compaction, type of cement, and the proportion, length, and orientation of glass fibers may all be varied to produce a specific product. Typically, a GFRC panel consists of 5 percent by weight (of total mix) of alkali resistant glass fiber (absolute minimum of 4 percent) combined with a portland cement/sand slurry. Methods of manufacture vary, but spraying either by hand equipment onto a form of the desired shape and size, or mechanically on a production line are most common.

It is important to understand that the material is a composite with reinforcing elements randomly distributed throughout the matrix, unlike reinforced concrete where the reinforcing steel is placed primarily in tensile stress areas.

Currently, GFRC is not considered as a vertical load-bearing component or as part of the lateral load-resisting system, although it can accept and transfer wind and self-weight and its own inertial seismic loads to the building's load resiting system. GFRC panels are used primarily as cladding or fascia panels.

GFRC systems can be designed to provide a 2-hour fire resistance rating using fire rated insulation and drywall. In addition, GFRC does not contribute to the fire load of the building.

2.7.2.1 Responsibilities

The PCI Code of Standard Practice for Precast Concrete is a compilation of practices and recommendation for design, manufacture and erection of precast concrete that also provides an excellent guide for GFRC panel fabrication and erection.

Areas of contractual responsibility that should be clearly assigned in the contract documents are:

1. Panel design
2. Installing, furnishing, and design of connection hardware
 a. Attached to the building frame
 b. Furnished loose
c. Secured to the panel
d. Integral with the panel

3. Panel installation
4. Sealing or coating
5. Joint sealant
6. Panel cleaning

Design calculations should be performed under the supervision of a registered professional engineer with experience in GFRC design. The GFRC manufacturer should be prepared to assist in the design of panels and connections. The owner's [Architect][Engineer] maintains ultimate design responsibility.

Contract drawings prepared by the [Architect][Engineer] should show connections in sufficient detail to permit design, estimating, and bidding. Panel manufacturers, during the preparation of shop drawings, usually review connections for tolerances, clearances, practicality, and performance. The manufacturer should call to the [Architect's][Engineer's] attention any recognized conflicting conditions.

PART 3 EXECUTION

3.1 GENERAL

Install panels and accessories in accordance with the approved shop drawings and as specified.

If substrate preparation is the responsibility of an installer other than the Contractor, notify Architect of unsatisfactory preparation before proceeding.

3.2 EXAMINATION

Do not begin installation until supporting structures have been properly prepared.

If support structure is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

3.3 INSTALLATION

Verify that all parts of the supporting structure are complete and ready to receive the panels and that site conditions are conducive to proper installation. Install precast concrete wall panels and accessories in accordance with approved detail drawings and descriptive data, and as specified below.

3.3.1 Building Framing System

Provide supporting members, including anchorage items attached to or embedded in building structural elements, prior to placement of panels.

3.3.2 Placing Panels

Panels must attain the specified 28-day compressive design strength prior to placement. Provide temporary supports and bracing, as required, to maintain panel position and alignment during attachment to the building framing system. Secure adjustable connections after panels have been properly positioned. All welded connections need to conform to the
requirements of AWS D1.1/D1.1M and AWS D1.4/D1.4M.

3.3.3 Erection Tolerances

**
NOTE: Review PCI MNL-117 and determine whether the tolerances specified are adequate for the project.
**

Locate panels to accommodate adjacent products, proper joint width, and alignment with adjacent precast members. Non-cumulative dimensional tolerances for erection of panels are as follows:

a. Face width of joint

Panel dimension normal to joint

3 m 10 feet or under: Plus or minus 5 mm 3/16 in

3 m to 6 m 10 feet to 20 feet: Plus 5 mm minus 6 mm 3/16 inch minus 1/4 inch

Each additional 3 m 10 feet: Plus or minus 2 mm 1/16 inch

b. Joint taper (panel edges not parallel): 0.2 percent or 2 mm 1/16 inch total, whichever is larger, but not greater than 10 mm 3/8 inch

c. Panel alignment

Jog in alignment of edge: 6 mm 1/4 inch

Offset in face of panel (exterior face unless otherwise noted): 6 mm 1/4 inch

d. Variation from theoretical position, any location: Plus or minus 6 mm 1/4 inch

e. Deviation from plumb: 0.2 percent, 10 mm 3/8 inch maximum

f. Maximum warpage after erection: One corner out of plane of other three, 0.5 percent of distance from nearer adjacent corner, or 3 mm 1/8 inch

g. Differential bowing or camber of adjacent panels: 6 mm 1/4 inch maximum

3.3.4 Joints

Joint widths between panels will be as specified unless otherwise indicated. Provide joints with sealants in accordance with Section 07 92 00 JOINT SEALANTS.

3.3.4.1 JOINT SEALING

Joint sealing will be as specified in Section 07 92 00 JOINT SEALANTS.
3.3.5 Protection

Protect exposed-to-view facing from staining and other damage. Do not allow laitance to penetrate, stain, or harden on exposed surfaces.

3.4 ERECTION

Erect precast units in accordance with the detail drawings and without damage to other units or to adjacent members. Set units true to alignment and level, with joints properly spaced and aligned both vertically and horizontally. Erection tolerances must be in accordance with the requirements of PCI MNL-117 and PCI MNL-122. As units are being erected, shims and wedges will be placed as required to maintain correct alignment. After final attachment, grout precast units as shown. After erection, clean and touch-up welds and abraded surfaces of steel with a zinc-rich paint. Welds must be made by a certified welder in accordance with the manufacturer's erection drawings. Finish pickup points, boxouts, inserts, and similar items to match adjacent areas after erection. Erection of precast units must be supervised and performed by workmen skilled in this type of work. Welding and the qualifications of welders must be in accordance with AWS D1.1/D1.1M.

3.5 PROTECTION OF WORK

Protect precast units against damage from subsequent operations.

3.6 DEFECTIVE WORK

Repair precast concrete units damaged during erection as soon after occurrence as possible or replaced, as directed, using approved procedures. All repairs to precast concrete units must match the adjacent surfaces in color and texture, as approved. Unless otherwise approved, repair procedures will conform to PCI MNL-117.

3.7 CONCRETE INSERTS EMBEDDED IN CAST-IN-PLACE CONCRETE

**
NOTE: Delete paragraph heading and the following paragraph when the precast concrete wall panels will not be attached to cast-in-place concrete structural members. Installation of concrete inserts embedded in cast-in-place concrete is specified in Section 03 30 53 MISCELLANEOUS CAST-IN-PLACE CONCRETE.
**

Deliver inserts to the site in time to be installed before the start of concrete placing. Contractor must provide setting drawings, instructions, and directions for the installation of inserts.

3.8 CONCRETE STRENGTH AT TIME OF PANEL INSTALLATION

**
NOTE: Delete one of the following paragraphs as applicable to the project. First paragraph will be selected except when the project schedule indicates installation of 28-day panels.
**

Do not install panels until concrete has attained the minimum laboratory
compressive strength at 28 calendar days specified.

Do not install panels before 28 calendar days from the date of casting unless approval has been obtained to make one compressive strength test, ASTM C39/C39M, and one flexural strength test using simple beam with third-point loading, ASTM C78/C78M, on field cured concrete test specimens, ASTM C31/C31M, for each individual panel to determine the strength of the concrete.

3.9 INSTALLATION TOLERANCES

Install panels within the tolerances specified in PCI MNL-117.

3.10 PLACING PANELS

Supporting members, including anchorage items attached to or embedded in building structural elements, must be in place before placing panels is started.

Install panels plumb, level, in alignment, and within limits of the installation tolerances.

3.11 CONNECTIONS TO THE BUILDING FRAMING SYSTEM

Connect panels to the building framing system as indicated on the approved shop drawings. Fix adjustable connections by locknuts or other approved means after panels have been positioned.

3.12 JOINTS AND GASKETS

Joints between panels must be the width indicated and within limits of installation tolerances.

Install gaskets in joints as indicated, continuous throughout the joint length, and compressed at least 25 percent by volume.

3.13 PROTECTION

Protect panels against staining of exposed-to-view facing and other damage until completion of the work.

3.14 INSPECTION AND ACCEPTANCE PROVISIONS

**
NOTE: When prestressed precast concrete wall panels are required, refer to Section 03 41 33 PRECAST STRUCTURAL PRETENSIONED CONCRETE.
**

3.14.1 Evaluation of Compressive Strength Tests

Concrete quality control tests specified will be evaluated as specified. Concrete delivered to the point of placement having a slump or total air content outside the values specified must not be used in the work.

Compressive strength tests will be considered satisfactory if the average of any group of five consecutive compressive strength tests which may be selected is in each instance equal to or greater than the 28-day design
compressive strength, or if not more than one compressive strength test in 10 has a value less than 90 percent of the 28-day design compressive strength.

If the compressive strength tests fail to meet the minimum requirements specified, panels fabricated of concrete represented by such tests will be considered deficient in strength and subject to the provisions specified.

3.14.2 Dimensional Tolerances

Panels having dimensions outside the limits for fabrication tolerances will be rejected.

3.14.3 Surface Finish Requirements

Panels will be rejected for the following surface finish deficiencies:

Exposed-to-view surfaces that do not match the color, aggregate size and distribution, and texture of the approved sample

Exposed-to-view surfaces that contain defects that affect the appearance of the finish, such as cracks, spalls, honeycomb, rock pockets, or stains and discoloration of aggregate or matrix that cannot be removed by cleaning

Concealed surfaces that contain cracks in excess of 0.2 millimeter 0.01 inch wide, cracks that penetrate to the reinforcement regardless of width, honeycomb, rock pockets, and spalls except minor breakage at corners and edges

3.14.4 Strength of Panels

Strength of precast concrete panels will be considered potentially deficient if the panels fail to comply with the requirements that control the strength of the panels, including the following conditions:

Failure to meet compressive strength tests

Reinforcement not conforming to the requirements specified

Concrete curing and protection of panels against extremes of temperature during curing not conforming to the requirements specified

Panels damaged during handling and erection

3.14.5 Testing Panels for Strength

When there is evidence that the strength of precast concrete panels does not meet specification requirements, cores drilled from hardened concrete for compressive strength determination must be made in accordance with ASTM C42/C42M and as follows:

Take at least three representative cores from the precast-concrete panels that are considered potentially deficient.

Test cores with the saturated surface dry.

Strength of cores will be considered satisfactory if their average is equal to or greater than 90 percent of the 28-day design compressive strength.
of 150 by 300 millimeter 6 by 12 inch cylinders.

Submit test reports on the same day that tests are made. Reports must contain the project name and number, date, name of contractor, name of precast concrete wall panel manufacturer, name of concrete-testing service, identification letter and number of panel or panels represented by core tests, nominal maximum size of aggregate, design compressive strength of concrete at 28 calendar days, compressive breaking strength and type of break, length of core test specimen before capping, compressive strength after correcting for length diameter ratio, direction of application of the load on the core test specimen with respect to the horizontal plane of the concrete as placed, and the moisture condition of the core test specimen at time of testing.

If the results of the core tests are unsatisfactory or if core tests are impractical to obtain, make static load tests of a panel and will be evaluated in accordance with ACI 305.1 and ACI 318M ACI 318.

Replace panels used for core tests or static load tests with panels that meet the requirements of this section.

3.14.6 Panels-in-Place

Panels will be rejected for any one of the following deficiencies:

Panels not conforming to the requirements for installation tolerances

Panels that are damaged during construction operations

Panels that develop surface-finish deficiencies as specified

3.15 CLEANING

Clean exposed-to-view surfaces of panels thoroughly with detergent and water; use a brush to remove foreign matter. Remove stains that remain after washing in accordance with recommendations of the panel manufacturer. Surfaces must be clean and uniform in color.

3.16 SAMPLING AND TESTING

3.16.1 Product Quality Control

3.16.1.1 Aggregate Tests

ASTM C33/C33M. Perform one test for each aggregate size, including determination of the specific gravity.

3.16.1.2 Strength Tests

ASTM C172/C172M. Provide ASTM C39/C39M and ASTM C31/C31M compression tests. Perform ASTM C143/C143M slump tests. Mold six cylinders each day or for every 15 cubic meters 20 cubic yards of concrete placed, whichever is greater. Perform strength tests using two cylinders at 7 days and two at 28 days. Cure four cylinders in the same manner as the panels and place at the point where the poorest curing conditions are offered. Moist cure two cylinders and test at 28 days.
3.16.1.3 Changes in Proportions

If the compressive strength falls below that specified, adjust the mix proportions and water content and make necessary changes in the temperature, moisture, and curing procedures to secure the specified strength. Notify the Contracting Officer of all changes.

3.16.1.4 Strength Test Results

Evaluate compression test results at 28 days in accordance with ACI 214R using a coefficient of variation of 20 percent. Evaluate the strength of concrete by averaging the test results (two specimens) of standard cylinders tested at 28 days. Not more than 20 percent of the individual tests can have an average compressive strength less than the specified ultimate compressive strength.

3.16.2 Rejection

Panels in place may be rejected for any one of the following product defects or installation deficiencies remaining after repairs and cleaning have been accomplished. "Visible" means visible to a person with normal eyesight when viewed from a distance of 6 m 20 feet in broad daylight.

a. Nonconformance to specified tolerances.

b. Air voids (bugholes or blowholes) larger than 10 mm 3/8 inch diameter.

c. Visible casting lines.

d. Visible from joints.

e. Visible irregularities.

f. Visible stains on panel surfaces.

g. Visible differences between panel and approved sample.

h. Visible non-uniformity of textures or color.

i. Visible areas of backup concrete bleeding through the facing concrete.

j. Visible foreign material embedded in the face.

k. Visible repairs.

l. Visible reinforcement shadow lines.

m. Visible cracks.

3.16.3 Field Quality Control

Perform field inspection of panel connections. Notify the Contracting Officer in writing of defective welds, bolts, nuts and washers within 7 working days of the date of inspection. All defective connections or welds are to be removed and re-welded or repaired as required by the Contracting Officer.
3.16.3.1 Welded Connection Visual Inspection

AWS D1.1/D1.1M, furnish the services of AWS-certified welding inspector for erection inspections. Welding inspector must visually inspect all welds and identify all defective welds.

-- End of Section --