UNIFIED FACILITIES GUIDE SPECIFICATIONS

References are in agreement with UMRL dated January 2015

SECTION TABLE OF CONTENTS

DIVISION 03 - CONCRETE

SECTION 03 40 00.00 10

PLANT-PRECAST CONCRETE PRODUCTS FOR BELOW GRADE CONSTRUCTION

08/06

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 QUALITY ASSURANCE
 1.3.1 NPCA and ACPA Plant Certification
 1.3.2 Qualifications, Quality Control and Inspection
 1.3.2.1 Qualifications
 1.3.2.2 Quality Control Procedures
 1.3.2.3 Inspection
 1.3.2.4 Test Reports
 1.3.2.4.1 Material Certifications and/or Laboratory Test Reports
 1.3.2.4.2 Mix Test
 1.3.2.4.3 Self-Consolidating Concrete
 1.3.2.4.4 In-Plant QA/QC Inspection Reports
 1.4 DELIVERY, STORAGE, AND HANDLING
 1.4.1 Delivery
 1.4.2 Storage
 1.4.3 Handling

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION
 2.1.1 Standard Precast Units
 2.1.2 Custom-Made Precast Units
 2.1.3 Proprietary Precast Units
 2.1.4 Joints and Sealants
 2.1.5 Concrete Mix Design
 2.1.5.1 Concrete Mix Proportions
 2.1.5.2 Concrete Strength
 2.1.5.3 Water-to-Cement Ratio
 2.1.5.4 Air Content
 2.1.5.5 Corrosion Control for Sanitary Sewer Systems
 2.2 MATERIALS
 2.2.1 Cement
 2.2.2 Silica Fume
2.2.3 Fly Ash and Pozzolans
2.2.4 Ground Granulated Blast-Furnace Slag
2.2.5 Water
2.2.6 Aggregates
 2.2.6.1 Selection
 2.2.6.2 Aggregates for Lightweight Concrete
2.2.7 Admixtures
 2.2.7.1 Air-Entraining
 2.2.7.2 Accelerating, Retarding, Water Reducing [Moderate to High]
 2.2.7.3 Pigments
2.2.8 Reinforcement
 2.2.8.1 Reinforcing Bars
 2.2.8.2 Reinforcing Wire
 2.2.8.3 Welded Wire Fabric
 2.2.8.4 Epoxy Coated Reinforcement
 2.2.8.5 Galvanized Reinforcement
2.2.9 Synthetic Fiber Reinforcement
2.2.10 Inserts and Embedded Metal
2.2.11 Accessories
2.2.12 Pipe Entry Connectors
2.2.13 Grout

PART 3 EXECUTION

3.1 FABRICATION AND PLACEMENT
 3.1.1 Forms
 3.1.2 Reinforcement
 3.1.3 Embedded Items
 3.1.4 Synthetic Fiber Reinforced Concrete
3.2 CONCRETE
 3.2.1 Concrete Mixing
 3.2.2 Concrete Placing
 3.2.2.1 Cold Weather Concreting
 3.2.2.2 Hot Weather Concreting
 3.2.3 Concrete Curing
 3.2.3.1 Curing by Moisture Retention
 3.2.3.2 Curing with Heat and Moisture
 3.2.4 Surface Finish
 3.2.4.1 Formed Non-Architectural Surfaces
 3.2.4.2 Unformed Surfaces
 3.2.4.3 Special Finishes
 3.2.5 Stripping Products from Forms
 3.2.6 Patching and Repair
 3.2.6.1 Repairing Minor Defects
 3.2.6.2 Repairing Honeycombed Areas
 3.2.6.3 Repairing Major Defects
 3.2.7 Shipping Products
3.3 INSTALLATION
 3.3.1 Site Access
 3.3.2 General Requirements
 3.3.3 Water Tightness
3.4 FIELD QUALITY CONTROL
 3.4.1 Site Tests
 3.4.2 Vacuum Testing
 3.4.3 Water Testing

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for precast, non-prestressed concrete products used for below grade construction (Sewage Systems, Subdrainage Systems, Storm Drainage Systems, Utility and Communications Structures, etc.).

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the
Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 211.2 (1998; R 2004) Standard Practice for Selecting Proportions for Structural Lightweight Concrete

ACI 318 (2014; Errata 2014) Building Code Requirements for Structural Concrete and Commentary

ACI 318M (2011; Errata 2013) Building Code Requirements for Structural Concrete & Commentary

AMERICAN CONCRETE PIPE ASSOCIATION (ACPA)

ACPA QPC (2005; Ver 3.0) QCast Plant Certification Manual

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2010; Errata 2011) Structural Welding Code - Steel

AWS D1.4/D1.4M (2011) Structural Welding Code - Reinforcing Steel

ASTM INTERNATIONAL (ASTM)

Concrete

ASTM A775/A775M (2007b; R2014) Standard Specification for Epoxy-Coated Steel Reinforcing Bars

ASTM C1244 (2011) Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill

ASTM C1244M (2011) Standard Test Method for Concrete Sewer Manholes by the Negative Air Pressure (Vacuum) Test Prior to Backfill (Metric)

ASTM C138/C138M (2014) Standard Test Method for Density ("Unit Weight"), Yield, and Air Content (Gravimetric) of Concrete

ASTM C1478 (2008; R 2013) Standard Specification for Storm Drain Resilient Connectors Between...
Reinforced Concrete Storm Sewer
Structures, Pipes and Laterals

ASTM C1478M (2008a; R 2013) Standard Specification for Storm Drain Resilient Connectors Between Reinforced Concrete Storm Sewer Structures, Pipes and Laterals (Metric)

ASTM C231/C231M (2014) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

Hydraulic Cements

ASTM C618 (2012a) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM C877 (2008) External Sealing Bands for Concrete Pipe, Manholes, and Precast Box Sections

ASTM C877M (2002; R 2009) External Sealing Bands for Concrete Pipe, Manholes, and Precast Box Sections (Metric)

ASTM C891 (2011) Installation of Underground Precast Concrete Utility Structures

CSA GROUP (CSA)

CSA A23.4 (2009; R 2014) Precast Concrete - Materials and Construction

NATIONAL PRECAST CONCRETE ASSOCIATION (NPCA)

1.2 SUBMITTALS

**

NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.
The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

All submittals are the responsibility of the precast concrete producer. Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

 Quality Control Procedures

SD-02 Shop Drawings

 Standard Precast Units; G[, [____]]
 Custom-Made Precast Units; G[, [____]]

SD-03 Product Data

 Standard Precast Units
 Proprietary Precast Units
 Embedded Items
 Accessories
1.3 QUALITY ASSURANCE

Demonstrate adherence to the standards set forth in NPCA QC Manual and/or ACPA QPC. Meet requirements written in the subparagraphs below.

1.3.1 NPCA and ACPA Plant Certification

The precast concrete producer shall be certified by the National Precast Concrete Association's and/or the American Concrete Pipe Association's Plant Certification Program prior to and during production of the products for this project.

1.3.2 Qualifications, Quality Control and Inspection

1.3.2.1 Qualifications

Select a precast concrete producer that has been in the business of producing precast concrete units similar to those specified for a minimum of 3 years. The precast concrete producer shall maintain a permanent quality control department or retain an independent testing agency on a continuing basis.

1.3.2.2 Quality Control Procedures

Submit quality control procedures established by the precast manufacturer in accordance with NPCA QC Manual and/or ACPA QPC. Show that the following QC tests are performed as required and in accordance with the ASTM standards indicated.

a. Slump: Perform a slump test for each 115 cubic m 150 cu yd of concrete produced, or once a day, whichever comes first. Perform slump tests in accordance with ASTM C143/C143M.

b. Temperature: Measure the temperature of fresh concrete when slump or air content tests are made and when compressive test specimens are made in accordance with ASTM C1064/C1064M.

c. Compressive Strength: Make at least four compressive strength specimens for each 115 cubic m 150 cubic yards of concrete of each mix in
accordance with the following Standards: ASTM C31/C31M, ASTM C192/C192M, ASTM C39/C39M.

d. Air Content: Perform tests for air content on air-entrained, wet-cast concrete for each 115 cubic m 150 cu yd of concrete, but not less often than once each day when air-entrained concrete is used. Determine the air content in accordance with either ASTM C231/C231M or ASTM C173/C173M for normal weight aggregates and ASTM C173/C173M for lightweight aggregates.

e. Unit Weight: Perform tests for unit weight a minimum of once per week to verify the yield of batch mixes. Perform unit weight tests for each 75 cubic m 100 cu yd of lightweight concrete in accordance with ASTM C138/C138M.

1.3.2.3 Inspection

The Contracting Officer may place an inspector in the plant when the units covered by this specification are being manufactured. The burden of payment for plant inspection will be clearly detailed in the specification. The precast concrete producer shall give notice 14 days prior to the time the units will be available for plant inspection. Neither the exercise nor waiver of inspection at the plant will affect the Government's right to enforce contractual provisions after units are transported or erected.

1.3.2.4 Test Reports

Submit the following as specified in paragraph SUBMITTALS:

1.3.2.4.1 Material Certifications and/or Laboratory Test Reports

Include mill tests and all other test data, for portland cement, blended cement, pozzolans, ground granulated blast furnace slag, silica fume, aggregate, admixtures, and curing compound proposed for use on this project.

1.3.2.4.2 Mix Test

reports showing that the mix has been successfully tested to produce concrete with the properties specified and will be suitable for the job conditions. Such tests may include compressive strength, flexural strength, plastic or hardened air content, freeze thaw durability, abrasion and absorption. Clearly detail in the specifications special tests for precast concrete or cast-in items.

1.3.2.4.3 Self-Consolidating Concrete

icient documentation, when the use of self-consolidating concrete (SCC) is proposed, showing a minimum of 30-days production track records demonstrating that SCC is appropriate for casting of the product.

1.3.2.4.4 In-Plant QA/QC Inspection Reports

Upon the request of the Contracting Officer.
1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery

Deliver precast units to the site in accordance with the delivery schedule to avoid excessive build-up of units in storage at the site. Upon delivery to the jobsite, all precast concrete units will be inspected by the Contracting Officer for quality and final acceptance.

1.4.2 Storage

Store units off the ground or in a manner that will minimize potential damage.

1.4.3 Handling

Handle, transport, and store products in a manner to minimize damage. Lifting devices or holes shall be consistent with industry standards. Perform lifting with methods or devices intended for this purpose as indicated on shop drawings.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Furnish precast concrete units designed and fabricated by an experienced and acceptable precast concrete manufacturer who has been, for at least 3 years, regularly and continuously engaged in the manufacture of precast concrete work similar to that indicated on the drawings. Coordinate precast work with the work of other trades.

2.1.1 Standard Precast Units

Design standard precast concrete units to withstand indicated design load conditions in accordance with applicable industry design standards [ACI 318M, ACI 318, ASTM, ACPA 01-102, Chapter 7-Design for Sulfide Control]. Design shall also consider stresses induced during handling, shipping and installation as to avoid product cracking or other handling damage. Indicate design loads for precast concrete units on the shop drawings. Submit drawings for standard precast concrete units furnished by the precast concrete producer for approval by the Contracting Officer. These drawings shall demonstrate that the applicable industry design standards have been met. Include installation and construction information on shop drawings. Include details of steel reinforcement size and placement as well as supporting design calculations, if appropriate. Produce precast concrete units in accordance with the approved drawings. Submit cut sheets, for standard precast concrete units, showing conformance to project drawings and requirements, and to applicable industry design standards listed in this specification.

2.1.2 Custom-Made Precast Units

Submit design calculations for custom-made precast units, prepared and sealed by a registered professional engineer, for approval prior to fabrication. Include in the calculations the analysis of units for lifting stresses and the sizing of lifting devices. Submit drawings furnished by the precast concrete producer for approval by the Contracting Officer. Show on these drawings complete design, installation, and construction information in such detail as to enable the Contracting Officer to...
determine the adequacy of the proposed units for the intended purpose. Include details of steel reinforcement size and placement as well as supporting design calculations, if appropriate. Produce precast concrete units in accordance with the approved drawings.

2.1.3 Proprietary Precast Units

Products manufactured under franchise arrangements shall conform to all the requirements specified by the franchiser. Items not included in the franchise specification, but included in this specification, shall conform to the requirements in this specification. Submit standard plans or informative literature, for proprietary precast concrete units. Make available supporting calculations and design details upon request. Provide sufficient information as to demonstrate that such products will perform the intended task.

2.1.4 Joints and Sealants

Provide joints and sealants between adjacent units of the type and configuration indicated on shop drawings meeting specified design and performance requirements.

2.1.5 Concrete Mix Design

2.1.5.1 Concrete Mix Proportions

Base selection of proportions for concrete on the methodology presented in ACI 211.1 for normal weight concrete and ACI 211.2 for lightweight concrete. Develop the concrete proportions using the same type and brand of cement, the same type and brand of pozzolan, the same type and gradation of aggregates, and the same type and brand of admixture that will be used in the manufacture of precast concrete units for the project. Do not use calcium chloride in precast concrete containing reinforcing steel or other embedded metal items. At a minimum of thirty days prior to precast concrete unit manufacturing, the precast concrete producer will submit a mix design and proportions for each strength and type of concrete that will be used. Furnish a complete list of materials, including quantity, type, brand and applicable data sheets for all mix design constituents as well as applicable reference specifications. The use of self-consolidating concrete is permitted, provided that mix design proportions and constituents meet the requirements of this specification.

2.1.5.2 Concrete Strength

Provide precast concrete units with a 28-day compressive strength (f'c) of [_____] MPa psi.

2.1.5.3 Water-to-Cement Ratio

Furnish concrete, that will be exposed to freezing and thawing, containing entrained air and with water-cement ratios of 0.45 or less. Furnish concrete which will not be exposed to freezing, but which is required to be watertight, with a water-cement ratio of 0.48 or less if the concrete is exposed to fresh water, or 0.45 or less if exposed to brackish water or seawater. Furnish reinforced concrete exposed to deicer salts, brackish water or seawater with a water-cement ratio of 0.40 or less for corrosion protection.
2.1.5.4 Air Content

The air content of concrete that will be exposed to freezing conditions shall be within the limits given below.

<table>
<thead>
<tr>
<th>NOMINAL MAXIMUM AGGREGATE SIZE</th>
<th>AIR CONTENT PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm3/8 inch</td>
<td>SEVERE EXPOSURE</td>
</tr>
<tr>
<td></td>
<td>6.0 to 9.0</td>
</tr>
<tr>
<td></td>
<td>MODERATE EXPOSURE</td>
</tr>
<tr>
<td></td>
<td>4.5 to 7.5</td>
</tr>
<tr>
<td>13 mm1/2 inch</td>
<td>5.5 to 8.5</td>
</tr>
<tr>
<td></td>
<td>4.0 to 7.0</td>
</tr>
<tr>
<td>19 mm3/4 inch</td>
<td>4.5 to 7.5</td>
</tr>
<tr>
<td></td>
<td>3.5 to 6.5</td>
</tr>
<tr>
<td>25 mm1.0 inch</td>
<td>4.5 to 7.5</td>
</tr>
<tr>
<td></td>
<td>3.0 to 6.0</td>
</tr>
<tr>
<td>38 mm1.5 inch</td>
<td>4.5 to 7.0</td>
</tr>
<tr>
<td></td>
<td>3.0 to 6.0</td>
</tr>
</tbody>
</table>

Note: For specified compressive strengths greater than 34.5 MPa 5000 psi, air content may be reduced 1 percent

2.1.5.5 Corrosion Control for Sanitary Sewer Systems

Follow design recommendations outlined in Chapter 7 of ACPA 01-102 or the ACPA 01-110 when hydrogen sulfide is indicated as a potential problem.

2.2 MATERIALS

Except as otherwise specified in the following paragraphs, conform material to Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE and Section 03 20 00.00 10 CONCRETE REINFORCING.

2.2.1 Cement

Furnish cement conforming to ASTM C150/C150M, Type I, II, III or V.

2.2.2 Silica Fume

**
NOTE: Silica fume concrete should be used where low permeability and enhanced durability are necessary and justified by additional cost, such as marine structures or other places where low permeability or severe abrasion resistance is required. Finishing is more difficult than conventional concrete. Proper curing is essential because there is a strong tendency for severe plastic shrinkage cracking. Assistance from a technical representative from the silica fume supplier may be required during batching, finishing, and curing at start-up of the job, when being used for the first time by the precast concrete producer. A HRWR recommended by the manufacturer of the silica fume should be used.
**

Provide silica fume conforming to ASTM C1240. Provide available alkalies
conforming to the optimal limit given in Table 2 of ASTM C1240. Silica fume may be furnished as a dry, densified material or as a slurry. When necessary, coordinate the services of a technical representative experienced in mixing, proportioning, placement procedures, and curing of concrete containing silica fume.

2.2.3 Fly Ash and Pozzolans

Fly ash is [required] [used] as a supplementary cementitious material (SCM) conforming to ASTM C618, Class [C or F] with 4 percent maximum loss on ignition and 35 percent maximum cement replacement by weight.

2.2.4 Ground Granulated Blast-Furnace Slag

**
NOTE: Ground granulated blast furnace slag and fly ash are materials listed in the EPA's Comprehensive Procurement Guidelines (CPG) http://www.epa.gov/cpg). If the Architect/Engineer determines that use of certain materials meeting the CPG content standards and guidelines would result in inadequate competition, do not meet quality/performance specifications, are available at an unreasonable price or are not available within a reasonable time frame, the Architect/Engineer may submit written justification and supporting documentation for not procuring designated items containing recovered material. Written justification may be submitted on a Request for Waiver Form to the NASA Environmental Program Manager for approval. The Request for Waiver Form is located in the NASA Procedures and Guidelines (NPG 8830.1) (http://nodis3.gsfc.nasa.gov).
**

Ground granulated blast furnace slag is [required] [used] as a supplementary cementitious material conforming to ASTM C989/C989M, Grade [120] with between 25 to 50 percent maximum cement replacement by weight.

2.2.5 Water

Furnish water potable or free of deleterious substances in amounts harmful to concrete or embedded metals.

2.2.6 Aggregates

2.2.6.1 Selection

**
NOTE: Select gradation(s) based on job requirements and constraints. The nominal maximum aggregate size may not exceed one-fifth the narrowest dimension between sides of forms, nor three-quarters the minimum clear spacing between individual reinforcing bars or wires.
**

Furnish aggregates conforming to ASTM C33/C33M. Provide aggregates not containing any substance, which may be deleteriously reactive with the
alkalies in the cement.

2.2.6.2 Aggregates for Lightweight Concrete
ASTM C330/C330M

2.2.7 Admixtures

2.2.7.1 Air-Entraining

**
NOTE: Air-entraining requirements may be deleted when the project is located in a nonfreezing climate.
**
ASTM C260/C260M

2.2.7.2 Accelerating, Retarding, Water Reducing [Moderate to High]
ASTM C494/C494M

2.2.7.3 Pigments
Non-fading and lime-resistant

2.2.8 Reinforcement

2.2.8.1 Reinforcing Bars

**
NOTE: Specify ASTM A706/A706M reinforcing where welding or bending of reinforcement bars is important. In addition, ASTM A775/A775M epoxy coated reinforcing may be specified where extra reinforcement corrosion protection is required.
**

a. Deformed Billet-steel: ASTM A615/A615M
b. Deformed Low-alloy steel: ASTM A706/A706M

2.2.8.2 Reinforcing Wire

a. Plain Wire: ASTM A1064/A1064M
b. Deformed Wire: ASTM A1064/A1064M

2.2.8.3 Welded Wire Fabric

a. Plain Wire: ASTM A1064/A1064M
b. Deformed Wire: ASTM A1064/A1064M

2.2.8.4 Epoxy Coated Reinforcement

a. Reinforcing Bars: ASTM A775/A775M
b. Wires and Fabric: ASTM A884/A884M

2.2.8.5 Galvanized Reinforcement

Provide galvanized reinforcement conforming to ASTM A767/A767M.
2.2.9 Synthetic Fiber Reinforcement

Synthetic fiber shall be polypropylene with a denier less than 100 and a nominal fiber length of 50 mm 2 inch.

2.2.10 Inserts and Embedded Metal

All items embedded in concrete shall be of the type required for the intended task, and meet the following standards.

a. Structural Steel Plates, Angles, etc.: ASTM A36/A36M
b. Hot-dipped Galvanized: ASTM A153/A153M
c. Proprietary Items: In accordance with manufacturers published literature

2.2.11 Accessories

Submit proper installation instructions and relevant product data for items including, but not limited to, sealants, gaskets, connectors, steps, cable racks and other items installed before or after delivery.

d. Elastomeric Joint Sealants: ASTM C920

2.2.12 Pipe Entry Connectors

Pipe entry connectors shall conform to ASTM C923M ASTM C923 or ASTM C1478M ASTM C1478.

2.2.13 Grout

**

NOTE: Delete air-entraining requirements when the project is located in a nonfreezing climate.
**

Nonshrink Grout shall conform to ASTM C1107/C1107M. Cementitious grout shall be a mixture of portland cement, sand, and water. Proportion one part cement to approximately 2.5 parts sand, with the amount of water based on placement method. [Provide air entrainment for grout exposed to the weather.]

PART 3 EXECUTION

3.1 FABRICATION AND PLACEMENT

Perform fabrication in accordance with NPCA QC Manual and/or ACPA QPC unless specified otherwise.

3.1.1 Forms

Use forms, for manufacturing precast concrete products, of the type and
design consistent with industry standards and practices. They should be capable of consistently providing uniform products and dimensions. Construct forms so that the forces and vibrations to which the forms will be subjected can cause no product damage. Clean forms of concrete build-up after each use. Apply form release agents according to the manufacturers recommendations and do not allow to build up on the form casting surfaces.

3.1.2 Reinforcement

Follow applicable ASTM Standard or ACI 318M/ACI 318 for placement and splicing. Fabricate cages of reinforcement either by tying the bars, wires or welded wire fabric into rigid assemblies or by welding, where permissible, in accordance with AWS D1.4/D1.4M. Position reinforcing as specified by the design and so that the concrete cover conforms to requirements. The tolerance on concrete cover shall be one-third of that specified but not more than 13 mm 1/2 inch. Provide concrete cover not less than 13 mm 1/2 inch. Take positive means to assure that the reinforcement does not move significantly during the casting operations.

3.1.3 Embedded Items

Position embedded items at locations specified in the design documents. Perform welding in accordance with AWS D1.1/D1.1M when necessary. Hold rigidly in place inserts, plates, weldments, lifting devices and other items to be imbedded in precast concrete products so that they do not move significantly during casting operations. Submit product data sheets and proper installation instruction for anchors, lifting inserts and other devices. Clearly indicate the products dimensions and safe working load.

3.1.4 Synthetic Fiber Reinforced Concrete

**
NOTE: Synthetic fiber reinforcement may be used in concrete as an aid in preventing plastic or shrinkage cracking in placements susceptible to this condition. Fiber reinforcement will not be used as a substitute for wire mesh and where service temperature may exceed 150 degrees C (300 degrees F). Concentrations above 0.1 percent by volume are not cost-effective.
**

Add fiber reinforcement to the concrete mix in accordance with the applicable sections of ASTM C1116/C1116M and the recommendations of the manufacturer, and in an amount of [0.1] [_____] percent by volume.

3.2 CONCRETE

3.2.1 Concrete Mixing

Mixing operations shall produce batch-to-batch uniformity of strength, consistency, and appearance.

3.2.2 Concrete Placing

Deposit concrete into forms as near to its final location as practical. Keep the free fall of the concrete to a minimum. Consolidate concrete in such a manner that segregation of the concrete is minimized and honeycombed areas are kept to a minimum. Use vibrators to consolidate concrete with
frequencies and amplitudes sufficient to produce well consolidated concrete.

3.2.2.1 Cold Weather Concreting

Perform cold weather concreting in accordance with ACI 306.1.

a. Provide adequate equipment for heating concrete materials and protecting concrete during freezing or near-freezing weather.

b. Free from frost all concrete materials and all reinforcement, forms, fillers, and ground with which concrete is to come in contact.

c. Do not use frozen materials or materials containing ice.

d. In cold weather the temperature of concrete at the time of placing shall not be below 8 degrees C (45 degrees F). Discard concrete that freezes before its compressive strength reaches 3.45 MPa (500 psi).

3.2.2.2 Hot Weather Concreting

Recommendations for hot weather concreting are given in detail in ACI 305R. During hot weather, give proper attention to constituents, production methods, handling, placing, protection, and curing to prevent excessive concrete temperatures or water evaporation that could impair required strength or serviceability of the member or structure. The temperature of concrete at the time of placing shall not exceed 32 degrees C (90 degrees F).

3.2.3 Concrete Curing

**
NOTE: Due to the immediacy of form removal, dry-cast products have a tendency to undergo undesirable accelerated drying. Consequently, early curing periods are most critical to ensure protection from extreme temperatures and dryness. Dry-cast products must be protected from drafts to prevent cracking.
**

Commence curing immediately following the initial set and completion of surface finishing.

3.2.3.1 Curing by Moisture Retention

Prevent moisture evaporation from exposed surfaces until adequate strength for stripping is reached by one of the following methods:

a. Cover with polyethylene sheets a minimum of 0.15 mm (6 mils) thick in accordance with ASTM C171.

b. Cover with burlap or other absorptive material and keep continually moist.

c. Use of a membrane-curing compound applied at a rate not to exceed 19 square m/4L (200 square ft/gallon), or in accordance with manufacturers' recommendations according to ASTM C309.
3.2.3.2 Curing with Heat and Moisture

**

NOTE: Cure as above surfaces that will be exposed to weather during service, a minimum of 3 days. Forms should be considered effective in preventing evaporation from the contact surfaces. If air temperature is below 50°F the curing period must be extended.

**

Do not subject concrete to steam or hot air until after the concrete has attained its initial set. Apply steam, if used, within a suitable enclosure, which permits free circulation of the steam in accordance with CSA A23.4. If hot air is used for curing, take precautions to prevent moisture loss from the concrete. The temperature of the concrete shall not be permitted to exceed 65 degrees C 150 degrees F. These requirements do not apply to products cured with steam under pressure in an autoclave.

3.2.4 Surface Finish

Finish unformed surfaces of wet-cast precast concrete products as specified. If no finishing procedure is specified, finish such surfaces using a strike-off to level the concrete with the top of the form.

3.2.4.1 Formed Non-Architectural Surfaces

Cast surfaces against approved forms following industry practices in cleaning forms, designing concrete mixes, placing and curing concrete. Normal color variations, form joint marks, small surface holes caused by air bubbles, and minor chips and spalls will be accepted but no major imperfections, honeycombs or other major defects will be permitted.

3.2.4.2 Unformed Surfaces

Finish unformed surfaces with a vibrating screed, or by hand with a float. Normal color variations, minor indentations, minor chips and spalls will be accepted but no major imperfections, honeycombs, or other major defects shall be permitted.

3.2.4.3 Special Finishes

Troweled, broom or other finishes shall be according to the requirements of project documents and performed in accordance with industry standards or supplier specifications. Submit finishes for approval when required by the project documents. The sample finishes shall be approved prior to the start of production.

3.2.5 Stripping Products from Forms

Do not remove products from the forms until the concrete reaches the compressive strength for stripping required by the design. If no such requirement exists, products may be removed from the forms after the final set of concrete provided that stripping damage is minimal.

3.2.6 Patching and Repair

No repair is required to formed surfaces that are relatively free of air voids and honeycombed areas, unless the surfaces are required by the design...
3.2.6.1 Repairing Minor Defects

Defects that will not impair the functional use or expected life of a precast concrete product may be repaired by any method that does not impair the product.

3.2.6.2 Repairing Honeycombed Areas

When honeycombed areas are to be repaired, remove all loose material and cut back the areas into essentially horizontal or vertical planes to a depth at which coarse aggregate particles break under chipping rather than being dislodged. Use proprietary repair materials in accordance with the manufacturer's instructions. If a proprietary repair material is not used, saturate the area with water. Immediately prior to repair, the area should be damp, but free of excess water. Apply a cement-sand grout or an approved bonding agent to the chipped surfaces, followed immediately by consolidating an appropriate repair material into the cavity.

3.2.6.3 Repairing Major Defects

Evaluate, by qualified personnel, defects in precast concrete products which impair the functional use or the expected life of products to determine if repairs are feasible and, if so, to establish the repair procedure.

3.2.7 Shipping Products

Do not ship products until they are at least 5 days old, unless it can be shown that the concrete strength has reached at least 75 percent of the specified 28-day strength, or that damage will not result, impairing the performance of the product.

3.3 INSTALLATION

3.3.1 Site Access

It is the Contractor's responsibility to provide adequate access to the site to facilitate hauling, storage and proper handling of the precast concrete products.

3.3.2 General Requirements

a. Install precast concrete products to the lines and grades shown in the contract documents or otherwise specified.

b. Lift products by suitable lifting devices at points provided by the precast concrete producer.

c. Install products in accordance with the precast concrete producer's instructions. In the absence of such instructions, install underground utility structures in accordance with ASTM C891. Install pipe and manhole sections in accordance with the procedures outlined by the American Concrete Pipe Association.

d. Field modifications to the product will relieve the precast producer of liability even if such modifications result in the failure of the product.
3.3.3 Water Tightness

Where water tightness is a necessary performance characteristic of the precast concrete product's end use, watertight joints, connectors and inserts should be used to ensure the integrity of the entire system.

3.4 FIELD QUALITY CONTROL

**
NOTE: Manholes should be tested prior to backfilling to verify the integrity of the installed product. Testing prior to backfilling facilitates quick and easy repair when required. When vacuum testing a backfilled manhole, appropriate adjustments must be made to the testing procedure to account for site conditions such as high water tables as to avoid over loading boots and connectors. Prior to vacuum testing, make calculations to ensure that connectors and boots are not loaded past the design limit as indicated in ASTM C923.
**

3.4.1 Site Tests

When water tightness testing is required for an underground product, use one of the following methods:

3.4.2 Vacuum Testing

Prior to backfill vacuum test system according to ASTM C1244M ASTM C1244.

3.4.3 Water Testing

Perform water testing according to the contract documents and precast concrete producer’s recommendations.

-- End of Section --