SECTION 03 23 00

STEEL STRESSING TENDONS AND ACCESSORIES FOR PRESTRESSED CONCRETE

11/09

PART 1 GENERAL

1.1 LUMP SUM PRICES
 1.1.1 Steel Stressing Tendons and Accessories for Prestressed Concrete
 1.1.1.1 Payment
 1.1.1.2 Unit of Measure

1.2 REFERENCES

1.3 SUBMITTALS

1.4 QUALITY ASSURANCE
 1.4.1 Certification of Prestressing Technicians
 1.4.2 Installation Drawings

1.5 DELIVERY, STORAGE, AND HANDLING

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Stressing Tendons
 2.1.1.1 Seven-Wire Stress-Relieved Strand and Strand Assemblies
 2.1.1.2 Stress-Relieved Wire and Wire Assemblies
 2.1.1.3 High-Strength Steel Bars
 2.1.2 Accessories
 2.1.2.1 Ducts
 2.1.2.2 Anchorages and Couplers
 2.1.2.3 Grout

2.2 TESTS, INSPECTIONS, AND VERIFICATIONS

PART 3 EXECUTION

3.1 INSTALLATION
 3.1.1 Prestressing Method and Equipment
 3.1.2 Anchorages
 3.1.3 Stressing Tendons and Ducts
 3.1.4 Tensioning Tendons
 3.1.4.1 Pretensioning
 3.1.4.2 Detensioning
 3.1.4.2.1 Multiple-Strand Release
3.1.4.2.2 Single-Strand Release
3.1.4.3 Post-Tensioning
3.1.5 Grouting Post-Tensioned Tendons
3.1.6 Accuracy of Stress and Elongation Measurement
 3.1.6.1 Stress Measurement
 3.1.6.2 Elongation Measurement
3.1.7 Prestressing Operations Records
3.2 INSPECTION
3.3 MATERIALS DISPOSITION RECORDS

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for furnishing all equipment, materials, techniques and labor for providing and installing steel stressing tendons and accessories for the construction of prestressed concrete. This section was originally developed for USACE Civil Works projects.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

1.1 LUMP SUM PRICES

NOTE: If Section 01 22 00.00 10 MEASUREMENT AND PAYMENT is included in the project specifications, this paragraph title (LUMP SUM PRICES) should be deleted from this section and the remaining appropriately edited subparagraphs should be inserted into Section 01 22 00.00 10.
1.1.1 Steel Stressing Tendons and Accessories for Prestressed Concrete

1.1.1.1 Payment

Payment will constitute full compensation for furnishing all plant, labor, materials and equipment and performing all operations necessary for steel stressing tendons and accessories for prestressed concrete.

1.1.1.2 Unit of Measure

Unit of measure: lump sum.

1.2 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 2014) Building Code Requirements for Structural Concrete and Commentary

ACI 318M (2011; Errata 2013) Building Code Requirements for Structural Concrete & Commentary

ASTM INTERNATIONAL (ASTM)

1.3 SUBMITTALS

**
NOTE: Review submittal description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for [Contractor Quality Control approval.] [information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- **SD-02 Shop Drawings**
 - Installation Drawings; G[, [_____]]

- **SD-03 Product Data**
 - Prestressing Method and Equipment; G[, [_____]]
 - Materials Disposition Records
 - Prestressing Operations Records

- **SD-06 Test Reports**
 - Stressing Tendons and Accessories

- **SD-07 Certificates**
 - Certification of Prestressing Technicians

1.4 QUALITY ASSURANCE

- **1.4.1 Certification of Prestressing Technicians**
 - Submit certification of Prestressing Technicians who will use the proposed system in the work. Certify by name that these technicians are thoroughly trained and skilled in the use of the system prior to start of prestressing operations.

- **1.4.2 Installation Drawings**
 - Submit detailed installation drawings for stressing tendons and accessories approved prior to commencing the work and showing the type and size of stressing tendons and anchorages, erection methods, sequence of stressing and stressing calculations.

1.5 DELIVERY, STORAGE, AND HANDLING

- Deliver materials suitably wrapped, packaged or covered at the factory to prevent being affected by dirt, water and rust. Protect materials against abrasion or damage during shipment and handling. Materials stored at the site shall be placed above ground on elevated, covered platforms.

PART 2 PRODUCTS

- **2.1 MATERIALS**
 - Stressing tendons and accessories shall conform to the requirements of
ACI 318M ACI 318 except as specified. Submit certified materials test reports for all required materials tests; note the specific standards followed in the performance of tests, show that materials comply with the applicable specifications for each material shipment, and identified with specific lots prior to use of materials in the work.

2.1.1 Stressing Tendons

Stressing tendons shall be clean and free of loose rust, scale and pitting. Permanently protect unbonded tendons from corrosion with an approved applied coating.

2.1.1.1 Seven-Wire Stress-Relieved Strand and Strand Assemblies

Seven-wire stress-relieved strand and strand assemblies shall conform to ASTM A416/A416M, Grade [250] [270], strand diameter as shown. Strand assemblies may be either shop or field assembled with anchor fittings positively attached to strands.

2.1.1.2 Stress-Relieved Wire and Wire Assemblies

Stress-relieved wire and wire assemblies shall conform to ASTM A421/A421M, Type BA or WA, wire diameter as shown. Wire assemblies shall be shop assembled with anchor fittings positively attached to wires.

2.1.1.3 High-Strength Steel Bars

High-strength steel bars shall conform to ASTM A722/A722M, Type I or II, meeting all supplementary requirements.

2.1.2 Accessories

2.1.2.1 Ducts

Provide tendon ducts of ferrous metal, capable of transmitting forces from grout to the surrounding concrete, flexible enough to conform to the tendon profile and strong enough to maintain their shape without deforming, sagging, or collapsing during concrete placement and vibration. The inside diameter of the ducts shall be large enough to provide an internal area at least twice the gross area of multiple wire, bar or strand assemblies and shall be at least 6 mm 1/4-inch larger than the diameter of a single wire, bar or strand placed in the ducts. Design ducts for watertight connections with all fittings. Galvanized ducts will not be permitted.

2.1.2.2 Anchorages and Couplers

Anchorages and couplers shall be metal of proven corrosion resistance and compatible with the stressing tendons, capable of fully developing the minimum guaranteed ultimate strength of tendons without excessive slip and approved. Anchorages shall be the button-head, wedge, nut and thread, grip nut, thread-bar, threaded plate or other approved type and shall be provided with bearing plates bars, rings, bells or other positive-attaching anchor fittings. Provide couplers with housings long enough to permit the necessary movements and fittings which allow complete grouting of all components.

2.1.2.3 Grout

Grout for grouting post-tensioned tendons shall consist of a mixture of
Portland cement, shrinkage compensating admixture and potable water of which final proportions shall be based on test results of sample mixtures. Cement shall conform to ASTM C150/C150M, Type I or II. The shrinkage compensating admixture shall produce a 2 percent minimum and a 10 percent maximum unconfined expansion when tested in accordance with ASTM C940, shall not contain aluminum powder, chlorides, fluorides or nitrates, may be dispensed in solid or liquid form and must be approved by the Contracting Officer prior to its use. The water content shall be the minimum necessary for proper placement but the water-cement ratio shall not exceed 0.50 by weight. Determine the pumpability of grout in accordance with ASTM C939. The efflux time of a grout sample immediately after mixing shall not be less than 11 seconds. The minimum 7-day compressive strength of 50 mm 2-inch grout cubes, molded, cured and tested in accordance with ASTM C109/C109M shall be 17.2 MPa 2500 psi.

2.2 TESTS, INSPECTIONS, AND VERIFICATIONS

Perform required material tests on stressing tendons and accessories by an approved laboratory to demonstrate that the materials are in conformance with the specifications. These tests shall be at the Contractor's expense.

PART 3 EXECUTION

3.1 INSTALLATION

Stressing tendons and accessories shall be installed or placed as specified and as shown on contract and approved installation drawings. Installation details of stressing tendons and accessories not specified or shown shall be in accordance with ACI SP-66 or ACI 318M ACI 318. Welding shall not be performed near or adjacent to stressing tendons. Stressing tendons shall not be installed until all welding has been completed on supports or any part which might be in contact with the tendons.

3.1.1 Prestressing Method and Equipment

Submit descriptions of the proposed prestressing methods and equipment approved prior to the start of prestressing operations and indicating the manufacturer of all prestressing equipment, including tensioning jacks, stress measurement gages, dynamometers and load cells or other devices for measuring stressing loads. Descriptions shall include certified calibration records for each set of jacking equipment and testing curves for stress measurement gages which show that the gages have been calibrated for the jacks for which they are to be used.

3.1.2 Anchorages

Set anchorages in a plane normal to the axis of the tendons such that uniform bearing on the concrete is assured. Use positive connecting anchorages rather than gripping types for anchoring embedded ends of tendons. Permanently protect anchorages and anchor fittings against corrosion. Parallel wire anchorage wedges or cores shall be recessed within the members.

3.1.3 Stressing Tendons and Ducts

Protective coverings and wrappings shall be removed and each stressing tendon shall be closely inspected to see that nicks, scoring, pits or other damage does not exist and high strength steel bars shall be closely inspected to assure that they are not bent and that threaded ends are in
satisfactory condition immediately prior to installation. Strand, wire and bar tendons shall be shop or field assembled as required and positively attached to anchorages. Anchor type WA wire assemblies only with wedge type anchorages. Assemble stressing tendons and ducts to required shapes and dimensions and place them where indicated on drawings within specified tolerances and adequately supported. Ducts shall be securely fastened at close intervals and grout openings and vents must be securely anchored to ducts and to either the forms or reinforcing steel to prevent displacement during concrete placing. The ends of ducts shall be effectively protected to prevent entry of water, concrete, grout or debris. Wires of parallel-wire assemblies shall not be spliced. Steel bar tendons may be joined by couplers where shown or approved, provided they are capable of developing the guaranteed minimum ultimate strength of the bars. Strands to be spliced shall have the same lay or direction of twist and the ends shall be cut by shears or abrasive grinders. No more than one strand shall be spliced in any one member where single strand tensioning is employed. Strand splices shall be capable of developing the full ultimate strength of the strand. Slippage of the splice shall be checked and correction made for differential slippage. Where multiple strand tensioning is used, not more than 10 percent of the strands in any member shall be spliced.

3.1.4 Tensioning Tendons

**
NOTE: Determination of the initial prestress force must consider prestress losses in accordance with ACI 318M/ACI 318, Section 18.6.
**

Tensioning of stressing tendons shall be as specified and shown. The stress induced in the tendons by any method of tensioning shall be determined independently by both (1) measurement of tendon elongation and (2) direct measurement of force using a pressure gauge or load cell. If the results of these two measurements do not check each other and the theoretical values within 5 percent, the operation shall be carefully checked and the source of error determined and corrected before proceeding further. Concrete cylinder tests shall indicate a breaking strength of at least [_____] MPa psi before transfer of stress to ensure that the concrete strength is adequate for the requirements of the anchorages or for transfer through bond as well as meet camber or deflection requirements. The final prestress load in each unit after seating shall be as shown. Take safety measures to prevent accidental injury caused by failure of a stressing tendon or tendon component. Protect the exposed ends of stressing tendons and anchorages from damage during stressing operations to prevent failure.

3.1.4.1 Pretensioning

Strand tendons may be tensioned by jacking of groups of strands or may be tensioned individually by means of a single-strand jack. Before final tensioning, bring all tendons to a uniform initial tension of approximately 4.5 kN 1,000 pounds per strand per 60 m 200 feet of bed, with a minimum of 4.5 kN 1,000 pounds and a maximum of 13.5 kN 3,000 pounds per strand. Measure the force corresponding to the initial tension by a dynamometer or other approved method to aid in determining the final elongation. After this initial tensioning, the tendons shall be stressed to the total tension indicated on the drawings using hydraulic or mechanical equipment with gauges or dynamometers graduated and calibrated to accurately determine the load applied. Draped pretensioned strands shall be tensioned partially by jacking at the end of the bed and partially by uplifting or depressing
strands, or they shall be held in their draped positions by means of rollers, pins or other approved methods and tensioned entirely by jacking. Use approved low-friction devices at all points of change in slope of draped strands while tensioning draped strands, regardless of the tensioning method used. Cable stress shall be maintained between anchorages until the concrete has reached the specified compressive strength.

3.1.4.2 Detensioning

Transfer forces from pretensioned strands to the concrete by either the multiple-strand release or the single-strand release method. The stress transfer shall not be performed until concrete strength, as indicated by test cylinders, has reached the specified transfer strength. If concrete has been heat-cured, the detensioning shall be done immediately following the curing period while the concrete is still warm and moist. During detensioning, the prestressing forces shall be kept nearly symmetrical about the vertical axis of the member and shall be applied in a manner that will minimize sudden loading. Eccentricity about the vertical axis shall be limited to one strand.

3.1.4.2.1 Multiple-Strand Release

In this method, all strands shall be detensioned simultaneously and the load transferred gradually to the concrete by hydraulic jacking.

3.1.4.2.2 Single-Strand Release

In this method, all strands shall be detensioned by slow heat-cutting the strands in accordance with a pattern and schedule as approved. The strands shall be heated using a low-oxygen flame until the metal gradually loses its strength, causing release of the strands to occur gradually. The low-oxygen flame shall be played along the strand for a minimum of 125 mm five inches. Strands shall be so heated that the failure of the first wire in each strand shall occur after the torch has been applied for a minimum of five seconds.

3.1.4.3 Post-Tensioning

Do not perform tensioning until the concrete has reached the required strength at transfer of stress. Before final tensioning of tendons, all tendons shall be brought to a uniform initial tension of approximately 10 percent of the full load. Measure the force corresponding to the initial tension by a dynamometer or other approved method as a starting point in determining final elongation. A temporary overstress above the final prestress force, as approved by the Contracting Officer, shall be used to overcome stress losses. The units shall be tensioned until the proper elongations and jacking pressures are attained and reconciled within the limits stated above. Straight tendons may be tensioned from one end. Curved or draped tendons shall be stressed by simultaneous jacking from both ends using a common pump with identical hoses and jacks, unless otherwise shown.

3.1.5 Grouting Post-Tensioned Tendons

Perform grouting between each tendon and its enclosing duct within 5 days after completion of the tensioning operation. Grouting shall not be performed if air temperature below 7.2 degrees C 45 degrees F is anticipated within 48 hours after grouting unless an approved method of
temperature control is used. Mix the grout in a mechanical mixer of a type that will produce uniformly and thoroughly mixed grout. First, place water in the mixer followed by cement and admixture. Grout shall be continuously agitated until it is pumped. Discard grout that has begun to set. Just before grouting, flush the ducts with clean water and then blow them clear by compressed air to remove excess water. With the grout vent open at one end of duct, apply grout continuously under moderate pressure at the other end until all entrapped air is forced out as indicated by a uniform flow of grout from the discharge vent. The discharge vent shall then be closed and the pressure raised to 340 MPa 50 psi minimum and held for at least 1 minute. Close the injection point by an approved means to prevent any loss of grout. For a period of at least 3 days after grouting the tendons, the prestressed members shall not have equipment or other loads placed on them. A longer period may be required, depending upon the method of curing and magnitude of imposed stresses.

3.1.6 Accuracy of Stress and Elongation Measurement

3.1.6.1 Stress Measurement

Hydraulic gauges, dynamometers, load cells or other devices for measuring stressing load shall have an accuracy of reading within two percent for stress measurement. Gauges are required to have been calibrated for the jacks for which they are used within a period not exceeding 12 months. Perform recalibration at any time that a gaging system shows indication of erratic results in the opinion of the Contracting Officer. Gauges shall indicate loads directly in kN pounds or be accompanied by a chart which converts dial readings into kN pounds.

3.1.6.2 Elongation Measurement

After the initial force has been applied to a tendon, establish reference points for measuring elongation due to additional tensioning forces. They shall be located according to the method of tensioning and type of equipment. The system used shall be capable of measuring the true elongation plus or minus 2 mm 1/16-inch.

3.1.7 Prestressing Operations Records

Compile and submit complete prestressing operations records to the Contracting Officer showing the manufacturer, identification and description of materials and equipment including prestressing tendons and jacking and load measuring equipment; location of prestressing tendons; initial design tensioning loads, final design tensioning loads and actual tensioning loads for tendons; dates tensioning loads applied; and theoretical and actual elongations for tendons before completion of the contract.

3.2 INSPECTION

The Contractor's facilities shall be open for inspection by the Contracting Officer at any time.

3.3 MATERIALS DISPOSITION RECORDS

Compile accurate materials disposition records, identifying all materials incorporated into the work and showing the disposition of specific lots of approved tested materials. Submit records which identify the incorporation of approved materials into the work before completion of the contract.
-- End of Section --