PART 1 GENERAL

1.1 REFERENCES
1.2 DEFINITIONS
 1.2.1 Epoxy Resin Binder
 1.2.2 Epoxy Concrete
 1.2.3 Epoxy Mortar
 1.2.4 Non-Pressure Epoxy Grout
 1.2.5 Pressure Grouting Epoxy
1.3 SUBMITTALS
1.4 QUALITY ASSURANCE
 1.4.1 Design Data
 1.4.1.1 Job Mix Formula
 1.4.2 Test Reports
 1.4.2.1 Epoxy Resin Binder
 1.4.2.2 Epoxy Resin Grout
1.5 DELIVERY, STORAGE, AND HANDLING
1.6 WEATHER LIMITATIONS
1.7 TRAFFIC CONTROL
1.8 EQUIPMENT

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Epoxy
 2.1.1.1 Epoxy Resin Binder for Concrete and Mortar
 2.1.1.2 Non-Pressure Epoxy Grout
 2.1.1.3 Crack Sealer for Pressure Grouting
 2.1.1.4 Crack Surface Sealer for Pressure Grouting
 2.1.2 Aggregate

PART 3 EXECUTION

3.1 PREPARATION
 3.1.1 Epoxy Concrete
 3.1.1.1 Patch Areas
3.1.1.2 Spalls at Joints and Cracks
3.1.1.3 Joints and Cracks
3.1.2 Epoxy Mortar for Cracks and Saw Kerfs
3.1.3 Epoxy Grout for Cracks
3.2 MIXING MATERIALS
3.3 PLACEMENT
3.3.1 Epoxy Concrete
3.3.2 Epoxy Mortar
3.3.3 Non-Pressure Epoxy Grout
 3.3.3.1 Cementing Dowels
 3.3.3.2 Epoxy Grout for Cracks
3.3.4 Pressure Grouting of Cracks
3.4 CURING
3.5 FIELD QUALITY CONTROL
 3.5.1 Sampling
 3.5.2 Testing
 3.5.3 Inspection

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for repair of portland cement concrete using epoxy resin grouts, mortars and concretes.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: Select appropriate title for type of repair work in contract. For repairs involving bonding new Portland cement concrete to old Portland cement concrete using epoxy resin binder use Section 32 13 13.06 PORTLAND CEMENT CONCRETE PAVEMENT FOR ROADS AND SITE FACILITIES or Section 03 30 00 CAST-IN-PLACE CONCRETE depending on project requirements.

NOTE: The following information should be shown on the project drawings:

1. Location and extent of spalled, cracked or damaged concrete to be repaired with epoxy;

2. Location and extent of cracked concrete or saw
kerfs to be filled with epoxy mortar;

3. Location of dowels to be installed and cracks to be repaired with non-pressure grout; and

4. Location and sizes of cracks to be filled by pressure grouting.

PART 1 GENERAL

1.1 REFERENCES

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.2 DEFINITIONS

1.2.1 Epoxy Resin Binder

A two-component epoxy bonding system in low and medium viscosities used by itself as a primer or for producing epoxy concrete or mortars when mixed with aggregate.

1.2.2 Epoxy Concrete

A combination of epoxy resin binder and fine and coarse aggregate used in the repair of spalling along joints or cracks, small surface spalls or "popouts."

1.2.3 Epoxy Mortar

A combination of epoxy resin binder and fine aggregate used in the surface repair of non-structural cracks and filling of saw kerfs.

1.2.4 Non-Pressure Epoxy Grout

A combination of epoxy resin binder, a mineral filler and a thixotropic agent used in cementing dowels in place and the repair of non-structural cracks.

1.2.5 Pressure Grouting Epoxy

A low viscosity epoxy resin system pumped under pressure into structural cracks in walls or pavements.

1.3 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office.
(Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-05 Design Data

**

NOTE: Use this submittal on airfield projects and on other projects where the total surface area to be repaired exceeds 2 square meters 20 square feet.

**

Job mix formula

SD-06 Test Reports

**

NOTE: Use this submittal on airfield projects, projects involving pressure grouting of cracks, and other projects where the total surface area to be repaired exceeds 2 square meters 20 square feet.

**

Sieve analysis test for aggregate

Epoxy resin binder tests

Epoxy grout tests

SD-07 Certificates

**

NOTE: Use this submittal on small repair projects, not requiring pressure grouting of cracks, whose total surface area to be repaired does not exceed 2 square meters 20 square feet.

**
1.4 QUALITY ASSURANCE

1.4.1 Design Data

1.4.1.1 Job Mix Formula

Submit, at least 15 days before work commences, a job-mix formula for each use of [epoxy concrete] [epoxy mortar]. Test reports shall accompany the mix design. Identify the proposed source of the materials and state the proportions of aggregates and epoxy resin. When determining job mix, use samples of materials to be used on the job.

a. Trial batches: Perform a minimum of three trial batchings in a certified testing laboratory. Try different aggregate-resin proportions to obtain satisfactory placing and finishing characteristics but keep the proportion by weight of aggregate to epoxy resin binder at least five to one. When mixing, add the fine aggregates first, and then the coarse aggregates. The final trial batch should be sufficiently wet so that some fines will "bleed" to the surface during finishing operations.

b. Supporting criteria: Include in the submittal the following data for each trial batch:

(1) Proportions by weight

(2) Unit weights and specific gravities of constituents

(3) Batch weights

(4) Compressive strengths of 76 by 152 mm 3 by 6 inch cylinders, made in accordance with ASTM C31/C31M, air cured for 7 days and tested in accordance with ASTM C39/C39M. Compressive strength shall be a minimum of [_____] psi.

(5) Curing time

1.4.2 Test Reports

1.4.2.1 Epoxy Resin Binder

Include the following:

a. Viscosity

b. Consistency

c. Gel time
d. Absorption

e. Shrinkage

f. Thermal compatibility

1.4.2.2 Epoxy Resin Grout

Include the following:

a. Epoxy number

b. Consistency

c. Compressive single shear strength

d. Pot life

1.5 DELIVERY, STORAGE, AND HANDLING

Inspect materials delivered to site for damage, unload and store with a minimum of handling. Deliver epoxy resin components and aggregate materials in original sealed containers and store in dry covered areas at temperatures below 30 degrees C 90 degrees F. Remove from job site unused mixed materials which have reached end of working or pot life.

1.6 WEATHER LIMITATIONS

Halt work when weather conditions detrimentally affect the quality of patching or bonding concrete. Apply epoxy resin materials only when the contact surfaces are completely dry and if the atmospheric and surface temperature ranges are suitable for the specified epoxy material. Follow manufacturer's instructions for weather conditions and temperature ranges.

1.7 TRAFFIC CONTROL

Do not permit vehicular or heavy equipment traffic on the pavement in the work area during the curing period. At the end of the curing period, light local traffic may be permitted on the pavement if approved by the Contracting Officer.

1.8 EQUIPMENT

Use a container recommended by the epoxy manufacturer as the mixing vessel. Use a power drive (air or spark-proof) propeller type blade for mixing except that hand mixing may be used for small batches. Use equipment specified by epoxy manufacturer for field mixing of aggregates and epoxy resin.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Epoxy

2.1.1.1 Epoxy Resin Binder for Concrete and Mortar
NOTE: The grades for ASTM C881/C881M and classes for both standards are as follows:

1. Grade 1: Low viscosity
2. Grade 2: Medium viscosity
3. Grade 3: Non-sagging consistency
4. Class B: For use between 5 and 15 degrees C 40 and 60 degrees F.
5. Class C: For use above 15 degrees C 60 degrees F.

Use the bracketed sentence on surfaces where a non-sagging epoxy resin is needed.

**
ASTM C881/C881M, Type III, Grade [1] [2], Class [B] [C] without mineral filler. [For [walls] [and] [ceilings] use ASTM C881/C881M, Type III, Grade 3, Class [B] [C] with filler.]

2.1.1.2 Non-Pressure Epoxy Grout

**
NOTE: The grades for ASTM C881/C881M and classes for both standards are as follows:

1. Grade 1: Low viscosity
2. Grade 2: Medium viscosity
3. Grade 3: Non-sagging consistency
4. Class B: For use between 5 and 15 degrees C 40 and 60 degrees F.
5. Class C: For use above 15 degrees C 60 degrees F.

Use the bracketed sentence on surfaces where a non-sagging epoxy resin is needed.

**
ASTM C881/C881M, Type IV, Grade [2] [3], Class [B] [C] with or without mineral filler.

2.1.1.3 Crack Sealer for Pressure Grouting

ASTM C881/C881M, Type IV, Grade 1, Class [B] [C] without filler.

2.1.1.4 Crack Surface Sealer for Pressure Grouting

ASTM C881/C881M, Type IV, Grade 3, Class [B] [C] with mineral filler.

2.1.2 Aggregate

For material passing No. 200 sieve provide a non-plastic material composed of a minimum of 75 percent limestone dust, talc or silica inert filler. Provide dry aggregate.
a. For epoxy concrete: ASTM C33/C33M, [maximum size [13 mm][1/2 inch].] [Conform to the following requirements:

<table>
<thead>
<tr>
<th>Sieve Designation</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 mm 1/2 in.</td>
<td>100</td>
</tr>
<tr>
<td>10 mm 3/8 in.</td>
<td>93-100</td>
</tr>
<tr>
<td>No. 4</td>
<td>70-80</td>
</tr>
<tr>
<td>No. 8</td>
<td>50-65</td>
</tr>
<tr>
<td>No. 16</td>
<td>37-53</td>
</tr>
<tr>
<td>No. 30</td>
<td>20-37</td>
</tr>
<tr>
<td>No. 50</td>
<td>10-20</td>
</tr>
<tr>
<td>No. 100</td>
<td>5-10</td>
</tr>
<tr>
<td>No. 200</td>
<td>3-5</td>
</tr>
</tbody>
</table>

b. For epoxy mortar: ASTM C144, [maximum size [_____ mm][_____ inch].] [No. 8 sieve] [No. 40 sieve] [[_____] sieve].

PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Epoxy Concrete

3.1.1.1 Patch Areas

Remove loose concrete from the spalled areas indicated. Inspect the cavity for remaining defective concrete by tapping with a hammer or steel rod and listening for dull or hollow sounds. In areas where tapping does not produce a solid tone, remove additional concrete until testing produces a solid tone. Make the entire cavity at least 25 mm one inch deep. Sawcut edges of cavity to avoid feather edging. Prepare surface of cavity by sandblasting, grinding, or water blasting. Remove dust, dirt, and loosely bonded material resulting from cleaning. Ensure cavity surfaces are dry.

3.1.1.2 Spalls at Joints and Cracks

NOTE: Use this paragraph when repairing pavements.

For spalls to be repaired that are adjacent to joints and working cracks insert preformed joint filler to the working faces of the spall. Trim filler to fit shape of the working faces of joint or crack so epoxy material is prevented from bypassing filler. Where practicable, extend filler horizontally and vertically into joint or crack opening. Secure filler strip in place prior to and during placement of epoxy concrete. [Apply a bond breaker to working faces at keyed joints. Keep bond breaker
off of concrete surface to be bonded.] After the epoxy concrete has completely cured, saw out the top 25 mm inch of the preformed joint filler and install liquid joint sealer in accordance with Section [32 01 19 FIELD MOLDED SEALANTS FOR SEALING JOINTS IN RIGID PAVEMENTS][32 13 73 COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS].

3.1.1.3 Joints and Cracks

**
NOTE: Use this paragraph when repairing pavements.
Fill in either Section 32 13 73 COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS or Section 32 01 19.61 RESEALING OF JOINTS IN RIGID PAVEMENT.

NOTE: Insert the appropriate Section number and title in the blank below using format per UFC 1-300-02.
**

Clean and seal joints and cracks as specified in [______].

3.1.2 Epoxy Mortar for Cracks and Saw Kerfs

Apply epoxy mortar to newly exposed loose and unsound materials. Prepare surfaces by sandblasting, scarifying or waterblasting. Remove dust, dirt, and loosely bonded material resulting from cleaning. Ensure surfaces are dry before application of epoxy mortar.

3.1.3 Epoxy Grout for Cracks

Apply grout to newly exposed concrete free of loose and unsound materials. Prepare surfaces by sandblasting, scarifying or waterblasting. Remove dust, dirt, and loosely bonded material resulting from cleaning. Ensure surfaces are dry before application of epoxy grout.

3.2 MIXING MATERIALS

Make batches small enough to ensure placement before binder sets. Mix materials in accordance with manufacturer's recommendations.

3.3 PLACEMENT

3.3.1 Epoxy Concrete

**
NOTE: Do not place epoxy concrete in layers greater than 25 mm one inch in thickness. This is to avoid heat buildup and subsequent thermal contraction.
**

Prime dry cavity surfaces with epoxy resin using a stiff bristle brush. Make coating approximately 0.5 mm 20 mils thick. Place epoxy concrete while primer is still tacky and in layers not exceeding one inch thick. Use vibratory floats, plates, or hand tampers to consolidate the concrete. Level each layer and screed the final surface to match the adjoining surfaces. Remove excess epoxy concrete on adjacent surfaces before the concrete hardens. Do not feather epoxy concrete out onto adjacent surfaces.
3.3.2 Epoxy Mortar

Prime surfaces with epoxy resin binder. Scrub prime coat into surface with a stiff bristle brush. Make coating approximately 0.5 mm 20 mils thick. Place epoxy mortar while primer is still tacky. Apply at a thickness recommended by the manufacturer. Work mortar into place and consolidate thoroughly so that contact surfaces are wetted by the mortar. Finish surface of mortar to the required texture. Do not feather edge epoxy mortar onto adjacent surfaces.

3.3.3 Non-Pressure Epoxy Grout

3.3.3.1 Cementing Dowels

Immediately prior to placing the dowel, clean hole of dust and other deleterious material with a high pressure air hose. Fill hole halfway with grout. Insert dowel in hole by rotating it at least one complete turn while tapping it down. If necessary add more grout to fill hole.

3.3.3.2 Epoxy Grout for Cracks

Apply epoxy grout at a thickness recommended by the manufacturer. Work grout into place and consolidate thoroughly so that contact surfaces are wetted by the grout. Finish surface of grout to the required texture. Do not feather edge epoxy grout onto adjacent surfaces.

3.3.4 Pressure Grouting of Cracks

**
NOTE: The interval between valves should be greater than the thickness of the member being repaired.
**

Clean each crack of dust, dirt, loose concrete and unsound material. Insert a valve at both ends of each crack, at the junction of two cracks, and along the length of each crack at 400 to 500 mm [16 to 20] [_____] inch intervals. Fill crack between valves with crack surface sealer. After crack surface sealer has hardened and cured, pump crack sealer into valve at one end of crack. For vertical surfaces start at lowest valve and work upwards. As crack sealer appears at next valve, pinch closed pumping valve and move to next valve and commence pumping. Continue procedure until other end of crack is reached. Avoid delays in pumping operation. After crack sealer has hardened and cured grind valves off flush with concrete surface. Coat areas of valves with crack surface sealer and allow to harden and cure.

3.4 CURING

Cure epoxy materials in accordance with manufacturer's recommendations.

3.5 FIELD QUALITY CONTROL

3.5.1 Sampling

As soon as epoxy resin and aggregate materials are available for sampling, obtain by random selection a sample of each batch. Clearly identify samples by designated name, specification number, batch number, project contract number, intended use and quantity involved.
3.5.2 Testing

**
NOTE: For runway repair projects and other projects requiring large amounts of epoxy repairs use the bracketed sentences.
**

At the discretion of the Contracting Officer, samples provided may be tested by the Government for verification. [Test samples by an approved laboratory. If a sample fails to meet specification requirements after two tests, replace the batch represented by the samples tested and retest. Test aggregates in accordance with ASTM C117 and ASTM C136/C136M.]

3.5.3 Inspection

**
NOTE: Use this paragraph for airfield repair projects and other projects having large patched surface areas.
**

Check each repaired area for cracks, spalls, popouts and loss of bond between repaired area and surrounding concrete. Check each repaired area for voids by tapping with a hammer or steel rod and listening for dull or hollow sounds. Immediately repair defects.

-- End of Section --