FROM: AFCESA/CEOA
139 Barnes Drive, Suite 1
Tyndall AFB FL 32403-5319

1. Purpose. This ETL provides a suite of laboratory tests, with their acceptable results, which can be used to evaluate rigid materials for repair of spalls in portland cement concrete (PCC) pavements. Rigid materials are considered to be those that have elastic moduli higher than approximately 1,000,000 pounds per square inch (psi). They are designed to exhibit properties similar to ordinary portland cement (OPC) concrete. These materials may themselves contain OPC or they may contain other modern hydrating minerals, such as magnesium phosphate. Rigid materials do not include most polymers, particularly those that are considered to produce “elastomeric concrete.” Spalls in PCC pavements consist of damage that does not penetrate through the pavement surface to the underlying layers. Spalls may be up to 5 feet (1.5 meters) in diameter. Typical pavement spalls require less than 1 cubic foot (0.028 cubic meter) of repair material, although larger spalls resulting from exploding munitions can occur in contingency environments.

2. Application: All Department of Defense (DOD) organizations responsible for airfield maintenance and repair. Prompt spall repair is necessary to reduce foreign object damage (FOD) potential, slow continuing pavement deterioration, and maintain riding smoothness on pavement surfaces. The testing protocol presented herein applies to repair materials intended for use on both airfield and roadway pavements that were previously constructed with OPC concrete.

2.2. Coordination: Major command (MAJCOM) pavement engineers.

2.3. Effective Date: Immediately. This ETL will remain in effect until these findings are incorporated into joint Service airfield damage repair (ADR) doctrine, PCC pavement maintenance and repair criteria, and similar technical guidance.

2.4. Intended Users:
- Air Force Prime BEEF and RED HORSE units;
- Army Corps of Engineers;
- Navy and Marine Corps;
- Construction contractors performing DOD airfield repairs;

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
• Other organizations responsible for airfield maintenance.

3. Referenced Publications.

- ASTM C39, *Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens*
- ASTM C78, *Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading)*
- ASTM C469, *Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression*
- ASTM C617, *Standard Practice for Capping Cylindrical Concrete Specimens*
- ASTM C666, *Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing*
- ASTM C882, *Standard Test Method for Bond Strength of Epoxy-Resin Systems Used With Concrete by Slant Shear*
- ASTM C1231, *Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders*
- ASTM C1581, *Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete Under Restrained Shrinkage*

4. Acronyms and Terms.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFCESA</td>
<td>Air Force Civil Engineer Support Agency</td>
</tr>
<tr>
<td>AFPD</td>
<td>Air Force policy directive</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
</tbody>
</table>
5. **Preface.** When military personnel attempt to select a material for repairing spalls, they encounter a tremendous number of options. Materials can be generalized into three categories: cementitious, asphaltic, and polymeric. Within each of these categories there are many products to choose from and some products blur the categorical boundaries (e.g., polymer-modified asphalt and polymer-modified concrete). Proprietary products often evolve over time as manufacturers attempt to address concerns or problems expressed by field personnel. The testing protocol presented herein is necessary for DOD organizations to eliminate from consideration for use those materials that have a low probability of success in the field. The field success of materials that pass this testing protocol cannot be guaranteed, but such materials could be considered to be worthy of field testing. This testing protocol is limited to cementitious products (portland cement or other cementitious products) that exhibit elastic moduli greater than 1,000,000 psi in their hardened state. This testing protocol is also limited to concrete materials that have a maximum aggregate size of 0.75 inch (19 millimeters). This ETL does not address the proper application of any materials in the field. Users are encouraged to practice strict adherence to manufacturers' guidelines.

6. **Evaluation Testing Protocol.**

6.1. **Description of Tests.**

6.1.1. **Compressive Strength.** Compressive strength is important for ensuring the spall repair will not crush easily under wheel loads or under stresses caused by environmentally induced pavement movements. Compressive strength testing should be accomplished in accordance with ASTM C39 procedures. Most cementitious spall repair materials can be evaluated using 3-inch by 6-inch (76-millimeter by 152-millimeter) cylinders. This ETL is limited to concrete materials that have a maximum aggregate size of 0.75 inch (19 millimeters). If the repair material has a particularly large coarse aggregate content and compaction in the 3-inch by 6-inch (76-millimeter by 152-millimeter) molds is difficult, the material should not be considered for use in spall repair. The material may, however, still be useful for larger repairs where the minimum dimension of the repair volume is 6 inches (152 millimeters) or greater. Compression testing using 6-inch by 12-inch (152-millimeter by 304-millimeter) cylinders is acceptable, but compression testing with 2-inch (50-millimeter) cubes (ASTM C109) is discouraged for the
sake of making comparisons between materials over time and because cubes often give inflated strength values relative to cylinders. Curing and capping methods are addressed in paragraph 6.1.9. Curing durations, prior to testing, include both 2-hour and 1-day durations as a minimum. These curing durations are the time elapsed from the final finishing of a compression specimen to the time of testing, not the time elapsed from the initial set of the material to the time of testing. Results are reported as maximum compressive stress (psi), which equals maximum force divided by cross-sectional area.

6.1.2. Flexural Strength. In addition to resisting crushing forces, the spall repair material must also resist bending forces or flexure. Although flexural strength can be correlated to compressive strength, it is recommended that flexural strength testing be accomplished according to ASTM C78 procedures. The specimen should be a beam, with a test span within 2% of being three times its depth as tested, with sides of the specimen at right angles with the top and bottom. Curing durations, prior to testing, include both 2-hour and 1-day durations as a minimum. Results are reported as the modulus of rupture (psi).

6.1.3. Bond Strength. Bond strength is important for ensuring the spall repair will not easily become dislodged from the parent material onto which the repair was applied. Bond strength testing should be accomplished in accordance with ASTM C882 procedures. This procedure involves the use of 3-inch by 6-inch (76-millimeter by 152-millimeter) cylinder molds. A bond line is produced at approximately 30 degrees from vertical by first making wedge-shaped dummy sections of either OPC mortar or the repair material itself. After curing, these wedge-shaped sections slide into the bottom of the cylinder molds. The repair material is then placed on top of the dummy section. After curing for 1 day, the composite cylinder, produced with repair material bonded either to OPC mortar or to itself, is tested in compression. Curing and capping methods are addressed in paragraph 6.1.9. Results are reported as maximum bond stress (psi), which is calculated as maximum force divided by the area of the elliptical bonding surface.

6.1.4. Modulus of Elasticity. Modulus of elasticity is important because a rigid repair material should not have stiffness significantly greater than the parent material onto which it is applied. With a higher stiffness, the repair material would assume higher stresses under wheel loading and pavement movement. Modulus of elasticity testing should be accomplished in accordance with ASTM C469 procedures. Cylinders may be either 3 inches by 6 inches (76 millimeters by 152 millimeters) or 6 inches by 12 inches (152 millimeters by 304 millimeters). In this method, a bonded or unbonded sensing device is attached to the cylinder at mid-height for the purpose of measuring vertical deformation. The gage length of the measurement must be at least three times the maximum aggregate size and not more than one-half the specimen height. The modulus of elasticity (with units of psi) is calculated as change in stress divided by change in strain, where strain is calculated as vertical deformation divided by gage length. The calculation, as specified in ASTM C469, produces a “chord modulus of elasticity.”
Conduct the test after the specimens have cured 2 hours and after 3 days. Curing and capping methods are addressed in paragraph 6.1.9.

6.1.5. Volumetric Expansion or Contraction. Excessive expansion and contraction of a spall repair, due to either internal or external forces, will result in a loss of bond to the parent material. Additionally, if the spall repair is large, excessive expansion can result in the deterioration of the surrounding pavements.

6.1.5.1. Coefficient of Thermal Expansion. The spall repair material's coefficient of thermal expansion is important for reasons similar to those for the modulus of elasticity. A repair material with a coefficient of thermal expansion that is significantly greater than the parent material would experience greater volume changes with changes in temperature (volumetric expansion due to externally applied forces). The difference in movements for the repair versus the parent material would tend to deteriorate their bond. Coefficient of thermal expansion testing should be accomplished in accordance with ASTM C531 procedures. These procedures involve the production of prismatic bars (1 inch by 1 inch by 10 inches [25 millimeters by 25 millimeters by 254 millimeters]) with metal studs on each end. The studs facilitate length measurements. The lengths of the bars are measured at both 73 °F (22.7 °C) and 210 °F (98.8 °C). The coefficient of thermal expansion is calculated as strain per degree F, with units of in/in/°F. Begin testing after the prisms have cured 3 days.

6.1.5.2. Length Change. Because volumetric expansion of spall repair materials can occur due to various causes other than applied force or temperature changes, testing for expansion due to internal forces needs to be accomplished according to ASTM C157 procedures. If a spall repair material experiences length changes greater than 0.03%, this will result in deterioration of the bond with the parent material and deterioration of the parent material itself. Following ASTM C157 procedures, test specimens are prismatic bars with dimensions based on maximum aggregate size. For spall repair materials with maximum aggregate size of 0.75 inch (19 millimeters), prismatic bars should be 3 inches by 3 inches by 11.25 inches (76 millimeters by 76 millimeters by 285 millimeters) with metal studs on each end. The studs facilitate length measurements. The bars are then cured in either water at 73 °F (22.7 °C) or air storage at 73 °F (22.7 °C) with a 50% relative humidity. Readings are taken during curing after 4, 7, 14, and 28 days and after 8, 16, 32, and 64 weeks. The length change at each age is calculated as a percentage (change in length/original length x 100%).

6.1.6. Shrinkage Potential. Shrinkage potential includes drying shrinkage, thermal shrinkage, and autogenous shrinkage, all of which occur during hydration. Shrinkage potential is important because repair materials that shrink excessively are more prone to bonding problems and shrinkage-related cracking.
Shrinkage in this protocol is measured using a restraining ring device, in accordance with ASTM C1581. While this procedure is slightly more involved than the traditional linear bar shrinkage test, which can be accomplished in conjunction with the coefficient of thermal expansion test (ASTM C531), the use of restraint is an attempt to capture all components of shrinkage listed above. The linear bar shrinkage test is limited to measuring only drying shrinkage. The restraining ring is constructed of structural steel pipe with a wall thickness of 0.5 inch (12 millimeters), an outside diameter of 13 inches (330 millimeters), and a height of 6 inches (152 millimeters). Repair material is cast on the outside of the restraining ring in a manner that produces a repair material ring with a height of 6 inches (152 millimeters) and a wall thickness of 1.5 inches (38 millimeters). The repair ring is moist cured at 73.5 °F (23 °C) for 24 hours. Then the outer form that was used to shape the repair ring is removed and the top of the repair ring is sealed so that all drying occurs on the outer circumference of the repair ring. The restraining ring stays in place during the entire test. The repair ring now cures in an environment with 50% relative humidity and a temperature of 73.5 °F (23 °C) for 28 days, during which the ring is monitored for cracking and the circumferential strain on the inside of the restraining ring is measured. The ring strain at 14 days must be measured, recorded, and compared to the requirement in Table 1. Results to be reported include ring strain at the end of moist curing, age at the time of first crack (if cracking occurs), and ring strain at either the age at the time of first crack or 28 days if cracking never occurs. The ages are computed from the time of casting the repair ring.

6.1.7. Freeze–Thaw Resistance. Resistance to damage during freezing and thawing is important to ensure the repair material can be used in cold climates that may subject the repaired surface to these environmental conditions. Unfortunately, it is generally accepted that there is no reasonably rapid laboratory test method that correlates well with field freeze–thaw performance for a wide range of material types. Therefore, although a freeze–thaw test is recommended for the purpose of continuing to develop a database of laboratory results that can be related to field performance, there is no material requirement for these test results. The test method recommended by this testing protocol is ASTM C666, Procedure A. The test specimens are prisms or cylinders with widths and depths or diameters of 3 to 5 inches (76 to 127 millimeters) and lengths of 11 to 16 inches (279 to 406 millimeters). During freezing and thawing cycles, the prisms are monitored for changes in relative dynamic modulus of elasticity, which is calculated via fundamental transverse frequency measurements. The prisms are subjected to 300 cycles or until the relative dynamic modulus of elasticity decreases to less than 60 percent of its initial value. Begin testing after the prisms have cured 3 days. Results are presented as a "durability factor," which is a function of the number of cycles survived by the specimen and the relative dynamic modulus of elasticity at the time the test is terminated.

6.1.8. Time of Setting. Because of the short working times associated with rapid-setting materials typically used for spall repairs, it is an important consideration in
the selection of a specific material to accomplish a repair. Working time for this protocol will be defined by the time elapsed between initial contact of water and the repair material and the initial set of the material. The test method recommended by this testing protocol is ASTM C191. For this method, a paste is proportioned and mixed to normal consistency and molded. Periodic penetration tests are performed on this paste by allowing a 1-millimeter Vicat needle to settle into this paste. The initial time of setting is the time elapsed between the initial contact of cement and water and the time when the penetration is measured or calculated to be 25 millimeters (1 inch). The Vicat final time of setting is the time elapsed between initial contact of the cement and water and the time when the needle does not leave a complete circular impression in the paste surface. Time of setting is reported in minutes. Begin testing immediately after the paste is mixed due to very fast set times associated with these repair materials.

6.1.9. Curing and Capping Methods. Although the curing and capping of laboratory specimens are not tests, they are important considerations for the purpose of accomplishing an accurate and consistent testing protocol.

6.1.9.1. Curing affects all tests described above, but note that the restraining ring shrinkage test involves specific curing conditions that must be met. For the other tests, curing would optimally reflect the type of curing that will be accomplished in field placements. It should also reflect the type of curing that is recommended by the repair material’s manufacturer. When in doubt about the anticipated field procedures, air cure at room temperature and 50% relative humidity to impose less than optimal, but realistic, curing conditions. Most importantly, report the curing conditions with the test results. To reflect field performance, curing durations in this protocol, unless specifically noted, are the time elapsed from the final finishing of a test specimen to the time of testing, not the time elapsed from the initial set of the material to the time of testing.

6.1.9.2. Capping affects compressive strength, bond strength, and modulus of elasticity testing. Capping is necessary for providing flat and perpendicular ends for the cylinders during compression loading. Capping complements additional flatness and perpendicularity requirements for the uncapped specimens. Capping may be accomplished with bonded materials (ASTM C617) or unbonded pad caps (ASTM C 1231). For this protocol, compressive strength and bond strength testing may be accomplished with either bonded or unbonded caps. Modulus of elasticity testing requires the use of bonded caps. Capping methods must be reported with the test results.

6.1.10. Replicates. Three replicates are required for each of the tests described as being part of this protocol. The average result, calculated from the three replicates, is compared to the requirements presented in Table 1. The average of only two replicates is not acceptable, so those conducting the tests are encouraged to make extra specimens in case a problem occurs during testing. If any test results are thrown out because they are believed to be outliers, this must
be reported with the other test results. The reasoning for considering the data to be invalid should be explained.

Table 1. Requirements for Test Results.

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| Compressive Strength C39 | ≥ 3,000 psi
Test at age of 2 hours
≥ 5,000 psi
Test at age of 1 day |
| Flexural Strength C78 | ≥ 350 psi
Test at ages of 2 hours and 1 day |
| Bond Strength C882 | ≥ 850 psi (repair bonding to OPC mortar)
≥ 1,000 psi (repair material bonding to repair material)
Test at age of 1 day |
| Modulus of Elasticity C469| ≤ 3 x 10^6 psi
Test at age of 2 hours
≤ 4 x 10^6 psi
Test at age of 3 days |
| Volumetric Expansion C531| ≤ 7 x 10^-6 in/in/°F
Test begins at age of 3 days |
| Bond Strength C157 | < 0.03%
Test begins at age of 4 days |
| Shrinkage Potential C1581| ≤ 40 microstrain at 14 days and no cracking at 28 days
Test begins at time of casting |
| Freeze–Thaw Resistance C666| No requirement at this time^1
Test begins at age of 3 days |
| Time of Setting C191 | No requirement at this time^2
Test begins immediately |

^1 Depending on results that are gathered for the database, a possible requirement designed to eliminate materials that are extremely susceptible to freeze–thaw damage would be <= 50% loss in relative dynamic modulus of elasticity after 50 cycles.

^2 Report initial and final set times in minutes.

6.1.11. Product Information and Test Results. Information on products that have undergone testing by this protocol is available at https://transportation.wes.army.mil/triservice/craterrepair.aspx.

6.2. Additional Reporting Requirements. When reporting results on a material after it has been tested in accordance with this testing protocol, the following information should be included to help reveal any differences between testing conducted by different testing agencies. It will also help to make available information that is important for material selection, but not necessarily directly related to the test result requirements presented in Table 1.

- Type of packaging (including quantity) for the material
- Manufacturer-reported shelf life and any problems related to material hydrating in package
- Safety/hazardous chemical issues, including the repair material and cleanup
- Method of mixing
- Volumes of material mixed in each batch
- Any notes concerning ease of use and mixing/consolidation characteristics
- Air temperature and sunlight conditions during mixing and casting
- Curing conditions
- Method of capping cylinders, where applicable
- Number of replicates used in calculating test results
- Anomalies or problems that occurred during testing
- Any eliminated data, along with justification
- Rate of freeze–thaw cycles (i.e., number of cycles per day)

6.3. Evolving Protocol. It is expected that this testing protocol and the associated material requirements will evolve over time as it is put to use and material test results are accumulated. One area of testing that has not been addressed in this protocol but which has recently received a lot of attention is the ability for repair materials to be used with non-potable forms of water, including seawater and gray (shower) water. The effects of non-potable water could be quantified by repeating the compressive strength tests with several “standardized” forms of non-potable water. The requirement would be a maximum percent loss in strength when potable water is replaced by each of these various forms of non-potable water.
7. **Point of Contact.** Recommendations for improvements to this ETL are encouraged and should be furnished to the Pavements Engineer, HQ AFCESA/CEOA, 139 Barnes Drive, Suite 1, Tyndall AFB, FL 32408-5319, DSN 523-6439, commercial (850) 283-6439, e-mail AFCESAReachbackCenter@tyndall.af.mil

JAMES D. FRISHKORN, Colonel, USAF 1 Atch
Director, Operations and Program Support Distribution List
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Defense Commissary Agency (1) AAFES (1)
Design and Construction Division ATTN: RE-C
2250 Foulois St., Suite 2 PO Box 660202
Lackland AFB, TX 78236 Dallas, TX 75266-0202

SPECIAL INTEREST ORGANIZATIONS

Information Handling Services (1) Construction Criteria Base (1)
15 Inverness Way East National Institute of Bldg Sciences
Englewood, CO 80150 Washington, DC 20005