FROM: HQ AFCESA/CESC
139 Barnes Drive, Suite 1
Tyndall AFB FL 32403-5319

SUBJECT: Engineering Technical Letter (ETL) 07-3: Jet Engine Thrust Standoff Requirements for Airfield Asphalt Edge Pavements

1. Purpose. This ETL presents the standoff distances from jet aircraft during engine run-up required to prevent uplift forces from causing catastrophic failure of asphalt edge pavements.

This ETL supersedes ETL 01-5, *Jet Engine Thrust Standoff Requirements for Airfield Asphalt Edge Pavements*.

2. Summary of Revisions: This ETL is substantially revised and must be completely reviewed.

3. Application. The requirements of this ETL are mandatory.

3.2. Coordination: Major command (MAJCOM) pavement engineers.

3.3. Effective Date: Immediately.

3.4. Intended Users:
 - Air Force MAJCOM engineers.
 - Base civil engineers (BCE), RED HORSE (Rapid Engineers Deployable - Heavy Operations Repair Squadron Engineers) squadrons, and other units responsible for design, construction, maintenance, and repair of airfield pavements.
 - U.S. Army Corps of Engineers (USACE) and Navy offices responsible for Air Force design and construction.

4. Referenced Publications:

4.1. Air Force:

4.2. Army:

4.3. Joint:

4.4. Industry:

5. Acronyms and Terms:

° R - degree Rankine
AFPD - Air Force policy directive
AFI - Air Force instruction
ETL - engineering technical letter
Fps - foot per second
ft - foot
ft-lb/lb - foot-pound per pound
kph - kilometers per hour
m - meter
MAJCOM - major command
mp - miles per hour
PCC - portland cement concrete
psia - pound per square inch absolute
psf - pounds per square foot
USACE - U.S. Army Corps of Engineers

6. Background. Catastrophic failure of airfield edge pavement due to uplift forces from jet engine thrust has occurred at multiple locations, resulting in damage to aircraft, vehicles, and real property. The criteria in this ETL are being issued due to tangible life
safety and financial concerns. This phenomenon has been observed and studied in the past. In 1988, the Air Force Engineering and Services Center (AFESC) responded to MAJCOMs’ requests for engineering data on this subject by providing safe standoff distances to edge pavements for numerous aircraft. This ETL encompasses and updates previous guidance.

7. Analysis. Past guidance was based on both mechanistic air velocity–air pressure relationships, as defined by the Bernoulli equation, and empirical observation. Based on the following Bernoulli model, the critical air velocity would be limited to 218 kilometers per hour (kph) (136 miles per hour [mph] or 199.8 feet per second [fps]):

\[
V = \sqrt{\frac{2g\Delta p}{\rho}}
\]

\[
\rho = \frac{p}{RT}
\]

where:

- \(V \) = velocity
- \(\Delta p \) = 1197 pascals (25 pounds per square foot [psf]) (51-millimeter [2-inch] thick asphalt mass)
- \(g \) = 9.81 meters (32.2 feet) per second•second
- \(\rho \) = 101.3 kilopascals (14.7 pounds per square inch absolute [psia]) at sea level
- \(R \) (gas constant, air) = 53.3 (ft-lb/lb) / °Rankine (°R)
- \(T \) = 985 °R (typical exhaust temperature at expected velocity and distance of interest)

However, empirical observation has indicated that the typical 51-millimeter (2-inch) thick edge pavement can withstand velocities up to 362 kph (225 mph). This higher observed velocity was accepted as a valid basis for criteria development because the simple Bernoulli model ignored other forces which are difficult to model, such as friction, shear, and adhesion. Without being able to further refine the mechanistic model, guidance was issued based on empirical observations, with a safety factor of two applied. The active uplift force is a function of the velocity squared. Dividing the observed velocity of 362 kph (225 mph) by the square root of this safety factor yielded a threshold velocity of 257 kph (160 mph). This velocity was issued as criteria for establishing standoff distances.

8. Standoff Distances. Aircraft should be positioned so that jet blast velocities are below 257 kph (160 mph) at the edge of a typical 51-mm (2-in) thick asphalt shoulder pavement. Table 1 lists the standoff distance aft of the aircraft tail where data indicates the engine exhaust velocity is reduced to 257 kph (160 mph). Where data indicates that
the actual velocity would be lower than this threshold velocity value, a minimum standoff distance of 8 meters (m) (25 feet [ft]) is recommended.

Table 1. Safe Standoff Distances Aft of Aircraft Tail (Based on 51-mm [2-in] Asphalt Shoulder Pavement Thickness)

NOTES
1. If the design aircraft is not listed in Table 1, bases should contact their MAJCOM pavement engineer for additional guidance.
2. The information listed in the table is derived from the best information available at the time of publication. However, aircraft models and engines can change, resulting in changes to jet blast characteristics. Therefore, when designing or evaluating a site for a particular aircraft, always check for updated jet blast characteristics.
3. Data indicates jet blast velocities are less than 257 kph (160 mph) at the back of the aircraft tail. In such instances, it is recommended that a minimum 8 m (25 ft) standoff should be applied.
4. All reported distances are for maximum or takeoff engine power settings.
5. Where no specific aircraft model is listed, listed standoff distance is for the aircraft model with highest jet blast velocity.
6. Standoff distance is based on Gulfstream II jet blast data.

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Aircraft Tail Standoff Distance</th>
<th>Jet Blast Velocity Data Source</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1B</td>
<td>88 m (290 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>B-52H</td>
<td>8 m (25 ft)</td>
<td>ETL 1110-3-394</td>
<td>See note 3</td>
</tr>
<tr>
<td>C-5A/B</td>
<td>23 m (75 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>C-9A</td>
<td>20 m (65 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>C-17</td>
<td>18 m (60 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>C-20B</td>
<td>18 m (60 ft)</td>
<td>ETL 1110-3-394</td>
<td>See note 6</td>
</tr>
<tr>
<td>C-21A</td>
<td>9 m (30 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>C-32 (Boeing 757-200)</td>
<td>55 m (180 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>C-37A</td>
<td>18 m (60 ft)</td>
<td>ETL 1110-3-394</td>
<td>See note 6</td>
</tr>
<tr>
<td>C-40 (Boeing 737-700)</td>
<td>26 m (85 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>C-130</td>
<td>8 m (25 ft)</td>
<td>ETL 1110-3-394</td>
<td>See note 3</td>
</tr>
<tr>
<td>C-141A/B</td>
<td>9 m (30 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>KC-10A</td>
<td>61 m (200 ft)</td>
<td>ETL 1110-3-394</td>
<td>3 engines</td>
</tr>
<tr>
<td>KC-135E/R EC-135A/G/L RC-135</td>
<td>32 m (105 ft)</td>
<td>ETL 1110-3-394</td>
<td></td>
</tr>
<tr>
<td>VC-25A (Boeing 747-200)</td>
<td>26 m (85 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Boeing 707</td>
<td>35 m (115 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Boeing 727</td>
<td>34 m (110 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Boeing 737</td>
<td>26 m (85 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Boeing 747</td>
<td>35 m (115 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Boeing 757</td>
<td>49 m (160 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>Aircraft Tail Standoff Distance</td>
<td>Jet Blast Velocity Data Source</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Boeing 767</td>
<td>46 m (150 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Boeing 777</td>
<td>94 m (310 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>DC-9</td>
<td>23 m (75 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>DC-10</td>
<td>73 m (240 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>MD-80</td>
<td>37 m (120 ft)</td>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Airbus A300F4-600</td>
<td>30 m (100 ft)</td>
<td>Airbus</td>
<td></td>
</tr>
<tr>
<td>Airbus A318-100</td>
<td>12 m (40 ft)</td>
<td>Airbus</td>
<td></td>
</tr>
<tr>
<td>Airbus A319</td>
<td>8 m (25 ft)</td>
<td>Airbus</td>
<td>See note 3</td>
</tr>
<tr>
<td>Airbus A320</td>
<td>26 m (85 ft)</td>
<td>Airbus</td>
<td></td>
</tr>
<tr>
<td>Airbus A321</td>
<td>8 m (25 ft)</td>
<td>Airbus</td>
<td>See note 3</td>
</tr>
<tr>
<td>Airbus A330</td>
<td>76 m (250 ft)</td>
<td>Airbus</td>
<td></td>
</tr>
<tr>
<td>Airbus A340</td>
<td>No jet blast data available for >102 mph.</td>
<td>Airbus</td>
<td></td>
</tr>
<tr>
<td>Airbus A380</td>
<td>107 m (350 ft)</td>
<td>Airbus</td>
<td></td>
</tr>
<tr>
<td>AN-124</td>
<td>No jet blast data available.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-76</td>
<td>No jet blast data available.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Run-Up Pad Design. When designing new or checking existing engine run-up pads, the following criteria should be applied:

9.1. New and existing run-up pads should be designed/modified to provide the full standoff distance behind the tail of the aircraft, as listed in Table 1.

9.2. When it is not possible or practical to meet the distances listed in Table 1, then a minimum 8 m (25 ft) of portland cement concrete (PCC) pavement must be provided between the tail of the aircraft and the edge of the apron. However, be aware that damage to the asphalt shoulder pavement can be expected. To mitigate damage, PCC may be constructed in lieu of asphalt in the areas affected by jet blast.

9.3. Consideration must be given to other objects in the jet blast wake (e.g., roads, parking lots, hangars, lights, cargo). Precautions should be taken to eliminate the potential for damage caused by flying debris.

10. Run-Up Pad Markings. Proper marking of engine run-up pads is critical to ensure aircraft positioning complies with required standoff distances. All markings should comply with AFI 32-1042, Standards for Marking Airfields, and ETL 04-2, Standard Airfield Pavement Marking Schemes. The following guidance shall be followed on current and future run-up pad locations:

10.1. Provide a centerline marking that runs parallel to the prevailing wind direction specific to the run-up pad.
10.2. Provide a nose wheel stop-block marking for the primary assigned aircraft that
will be using the run-up pad. If several different aircraft are assigned to the
installation, provide a nose wheel stop-block marking for the most demanding
aircraft. Aircraft may be parked on nose wheel stop-block markings that provide
more standoff distance than required. However, aircraft must not be parked on nose
wheel stop-block markings that provide less standoff distance.

10.3. Label each nose wheel stop-block marking for the aircraft that are intended to
use it. Only mark blocks for primary assigned aircraft. Transient aircraft requiring use
of the run-up pad should be evaluated on a case-by-case basis.

11. Contact. Recommendations for improvements to this ETL are encouraged and
should be furnished to HQ AFCESA/CESC, 139 Barnes Drive, Suite 1, Tyndall AFB, FL
32408-5319, Pavements Engineer, HQ AFCESA/CESC, DSN 523-6334, commercial
(850) 283-6334, internet AFCESAReachBackCenter@tyndall.af.mil.

BRENT HILL, COL, USAF
Director of Engineering Support

1 Atch
Distribution List
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Defense Commissary Service (1) AAFES (1)
Design and Construction Division ATTN: RE-C
2250 Foulois St., Suite 2 PO Box 660202
Lackland AFB, TX 78236 Dallas, TX 75266-0202

SPECIAL INTEREST ORGANIZATIONS

Information Handling Services (1) Construction Criteria Database (1)
15 Inverness Way East National Institute of Bldg. Sciences
Englewood, CO 80150 Washington, DC 20005