SECTION TABLE OF CONTENTS

DIVISION 32 - EXTERIOR IMPROVEMENTS

SECTION 32 01 19.61

RESEALING OF JOINTS IN RIGID PAVEMENT

04/06

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS
1.3 DELIVERY, STORAGE, AND HANDLING
1.4 ENVIRONMENTAL REQUIREMENTS
1.5 TRAFFIC CONTROL
1.6 EQUIPMENT
 1.6.1 Joint Cleaning Equipment
 1.6.1.1 Routing Tool
 1.6.1.2 Concrete Saw
 1.6.1.3 Sandblasting Equipment
 1.6.1.4 Air Compressor
 1.6.1.5 Vacuum Sweeper
 1.6.1.6 Hand Tools
 1.6.2 Joint Sealing Equipment
 1.6.2.1 Two-Component Cold-Applied Liquid Sealants
 1.6.2.2 Equipment for Silicone Sealant
 1.7 SAFETY PROVISIONS

PART 2 PRODUCTS

2.1 MATERIALS
 2.1.1 Joint Sealant
 2.1.1.1 Two Component Cold-Applied Sealing Compound
 2.1.1.2 Sealant, Joint, Non-Jet Fuel Resistant, Hot Applied
 2.1.1.3 Single Component Cold-Applied Silicone
 2.1.2 Primers
 2.1.3 Bond Breakers
 2.1.3.1 Blocking Media
 2.1.3.2 Separating Tape

PART 3 EXECUTION

3.1 JOINT PREPARATION
3.1.1 Removal of Existing Material
3.1.2 Refacing of Joints
 3.1.2.1 Joint Widening (Except Expansion Joints)
3.1.3 Final Cleaning of Joints
 3.1.3.1 Sandblasting Cleaning
3.1.4 Bond Breaker
 3.1.4.1 Blocking Media (Backer Rod) (Except for Expansion Joints)
 3.1.4.2 Separating Tape
3.1.5 Rate of Progress
3.1.6 Disposal of Debris
3.2 PREPARATION OF SEALANT
 3.2.1 Hot-Poured Type
 3.2.2 Cold-Applied, Two Component Type
3.3 INSTALLATION OF SEALANT
 3.3.1 Test Section
 3.3.2 Time of Application
 3.3.3 Sealing the Joints
3.4 FIELD QUALITY CONTROL
 3.4.1 Sampling Joint Seal
 3.4.2 Joints
 3.4.3 Joint Seal Test Section
 3.4.4 Joint Sealer
3.5 ACCEPTANCE

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for removal of old sealing materials from existing joints of portland cement concrete pavement and resealing of joints.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable item(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

NOTE: For joints in new pavement, use Section 32 13 73 COMPRESSION JOINT SEALS FOR CONCRETE PAVEMENTS. When crack repair is involved, edit accordingly, including the section title. This specification should not be used for liquid oxygen compatible joint seals.

NOTE: The following information shall be shown on the project drawings:

1. Spacing, width, and type of joints in concrete pavements to be sealed.

2. Typical details of existing joints.
3. Depth of existing sealant to be removed for each type of joint, if not specified.

4. Detail of type of joint to be refaced or widened with a concrete saw. Show extent of new width and depth of sawing to provide the proper shape factor of the void space in the joint. For materials, other than silicone, the ratio of the depth to width (d/w) of the sealant reservoir should generally be not less than 1 nor greater than 1.5. For silicone sealant a depth to width ratio of approximately 0.5 is preferred. Depending upon the width of the refaced joint, the thickness of the sealant bead should be between 6 and 13 mm 1/4 and 1/2 inch. Following are the recommended details for silicone sealants:

<table>
<thead>
<tr>
<th>Refaced Joint Width</th>
<th>10 mm</th>
<th>13 mm</th>
<th>19 mm</th>
<th>25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recess Below Surface</td>
<td>6 mm</td>
<td>6 mm</td>
<td>6 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Thickness of Sealant</td>
<td>6 mm</td>
<td>6 mm</td>
<td>10 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Backer Rod Diameter</td>
<td>13 mm</td>
<td>16 mm</td>
<td>22 mm</td>
<td>31 mm</td>
</tr>
<tr>
<td>Total Depth of Joint</td>
<td>25 mm</td>
<td>28 mm</td>
<td>38 mm</td>
<td>56 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refaced Joint Width</th>
<th>3/8"</th>
<th>1/2"</th>
<th>3/4"</th>
<th>1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recess Below Surface</td>
<td>1/4"</td>
<td>1/4"</td>
<td>1/4"</td>
<td>1/2"</td>
</tr>
<tr>
<td>Thickness of Sealant</td>
<td>1/4"</td>
<td>1/4"</td>
<td>3/8"</td>
<td>1/2"</td>
</tr>
<tr>
<td>Backer Rod Diameter</td>
<td>1/2"</td>
<td>5/8"</td>
<td>7/8"</td>
<td>1 1/4"</td>
</tr>
<tr>
<td>Total Depth of Joint</td>
<td>1"</td>
<td>1 1/8"</td>
<td>1 1/2"</td>
<td>2 1/4"</td>
</tr>
</tbody>
</table>

5. Location and type of bond breaker or back-up.

6. Identify type of sealant based on proposed use of pavements. (See note in paragraph entitled "Joint Sealant.")

7. For joint details see UFC 3-260-02, "Pavement Design for Airfields."

**
PART 1 GENERAL

1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in
the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a Reference Identifier (RID) outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text will automatically be deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C639 (2001; R 2011) Rheological (Flow) Properties of Elastomeric Sealants

ASTM C661 (2015) Indentation Hardness of Elastomeric-Type Sealants by Means of a Durometer

ASTM C792 (2004; R 2008) Effects of Heat Aging on Weight Loss, Cracking, and Chalking of Elastomeric Sealants

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

FS SS-S-1401 (Rev C; Am 1; Notices 1, 2) Sealant, Joint, Non-Jet-Fuel-Resistant, Hot-Applied, for Portland Cement and

SECTION 32 01 19.61 Page 5
1.2 SUBMITTALS

NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G". Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, a code of up to three characters within the submittal tags may be used following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

The "S" following a submittal item indicates that the submittal is required for the Sustainability eNotebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Locate the "S" submittal under the SD number that best describes the submittal item.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control approval.][for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Asphalt Concrete Pavements

FS SS-S-200 (Rev E; Am 1; Notice 1) Sealant, Joint, Two-Component, Jet-Blast-Resistant, Cold-Applied, for Portland Cement Concrete Pavement

SECTION 32 01 19.61 Page 6
SD-03 Product Data
Joint Sealant
Submit catalog cuts, specifications, Safety Data Sheets and other information documenting conformance to contract requirements.

SD-04 Samples

**
NOTE: Liquid joint sealer proposed for use in airfield pavements should be tested by the U.S. Army Corps of Engineer, Waterways Experiment Station, P. O. Box 631, Vicksburg, MS 39180, Attn: Larry Lynch, telephone: (601) 634-4274, before acceptance. Project Managers should assure that sufficient funds (approximately $1500) are available and that the 45 day testing time requirement has been taken into account when establishing contract completion time. For small projects involving approximately less than 3,000 m 10,000 linear feet of joint sealing, the requirement for testing may be waived provided that a Factory Test Report is submitted. In no case should materials not meeting the applicable specification be accepted.
**

Joint Filler
Separating Tape
Joint Backer Rod
Joint Sealant

Furnish for testing a five gallon sample of each joint seal with associated primer to the Contracting Officer a minimum of 60 days prior to its use on the job. Each container shall be factory sealed and must contain a factory applied label showing the following information:

Name of sealant
Identification of component, or primer
Specification number and type
Manufacturer's name
Manufacturer's lot and batch number
Date of Manufacture (month and year)
Shelf life retest date (month and year)
List of hazardous components
Quantity of material in container (volume)
NOTE: Liquid joint sealer proposed for use in airfield pavements should be tested by the U.S. Army Corps of Engineer, Waterways Experiment Station, P. O. Box 631, Vicksburg, MS 39180, Attn: Larry Lynch, telephone: (601) 634-4274, before acceptance. Project Managers should assure that sufficient funds (approximately $1500) are available and that the 45 day testing time requirement has been taken into account when establishing contract completion time. For small projects involving approximately less than 3,000 m 10,000 linear feet of joint sealing, the requirement for testing may be waived provided that a Factory Test Report is submitted. In no case should materials not meeting the applicable specification be accepted.

NOTE: Factory test report should be required for joint seals on projects when the Government testing is waived.

Joint Sealant

SD-07 Certificates

Equipment List

SD-08 Manufacturer's Instructions

Joint Sealant

Instructions shall include, but not be limited to: storage requirements, ambient temperature and humidity ranges, and moisture condition of joints for successful installation; requirements for preparation of joints; safe heating temperature; mixing instructions; installation equipment and procedures; application and disposal requirements; compatibility of sealant with filler material; curing requirements; and restrictions to be adhered to in order to reduce hazards to personnel or to the environment. Submit instructions at least 30 days prior to use.

1.3 DELIVERY, STORAGE, AND HANDLING

Inspect materials delivered to the site for visible damage, and unload and store with a minimum of handling. Joint materials shall be delivered in original sealed containers and shall be protected from freezing or overheating. Provide jobsite storage facilities capable of maintaining temperature ranges within manufacturers recommendations.
1.4 ENVIRONMENTAL REQUIREMENTS

Work shall not proceed when weather conditions detrimentally affect the quality of cleaning joints or applying joint sealants. Joint preparation and sealing shall proceed only when weather conditions are in accordance with manufacturer's instructions. During installation, surfaces shall be dry and sealant and bond breakers shall be protected from moisture.

1.5 TRAFFIC CONTROL

Do not permit vehicular or heavy equipment traffic on the pavement in the area of the joints being sealed during the protection and curing period of the joint sealant. At the end of the curing period, traffic may be permitted on the pavement when approved.

1.6 EQUIPMENT

Submit a equipment list and description of the equipment to be used and a statement from the supplier of the joint sealant that the proposed equipment is acceptable for installing the specified sealant. Equipment for heating, mixing, and installing joint seals shall be in accordance with the instructions provided by the joint seal manufacturer. Furnish equipment, tools, and accessories necessary to clean existing joints and install liquid joint sealants. Maintain machines, tools, and other equipment in proper working condition.

1.6.1 Joint Cleaning Equipment

1.6.1.1 Routing Tool

To remove old sealant from joints, select rectangular shaped routing tool that is adjustable to varying widths and depths required. The equipment shall be capable of maintaining accurate cutting depth and width control. The joint plow shall be equipped with a spring or hydraulic mechanism to release pressure on the tool prior to spalling the concrete.

1.6.1.2 Concrete Saw

Self-propelled power saw with diamond saw blades designed for sawing, refacing, widening, or deepening existing joints as specified without damaging the sides, bottom, or top edge of joints. Blades may be single or gang type with one or more blades mounted in tandem for fast cutting. Select saw adequately powered and sized to cut specified opening with not more than two passes of the saw through the joint.

1.6.1.3 Sandblasting Equipment

Commercial type capable of removing residual sealer, oil, or other foreign material. Equipment shall include an air compressor, hose and nozzles of proper size, shape, and opening. Attach an adjustable guide that will hold the nozzles aligned with the joint to effectively and efficiently clean without damage to concrete edges. Adjust height, angle of inclination, or size of nozzles to sandblast joint faces and not bottom of joint.

1.6.1.4 Air Compressor

Portable air compressor capable of operating the sandblasting equipment and capable of blowing out sand, water, dust adhering to sidewalls of concrete, and other objectionable materials from the joints. The compressor shall
furnish air at a pressure not less than 620 kPa 90 psi and a minimum rate of 0.07 cubic meter of air per second 150 cubic feet of air per minute at the nozzles and free of oil.

1.6.1.5 Vacuum Sweeper

Self-propelled, vacuum pickup sweeper capable of completely removing loose sand, water, joint material, and debris from pavement surface.

1.6.1.6 Hand Tools

When approved, hand tools such as brooms and chisels may be used in small areas for removing old sealant from joints and repairing or cleaning the joint faces.

1.6.2 Joint Sealing Equipment

Joint sealing equipment shall be of a type required by the joint seal manufacturer's installation instructions. Equipment shall be capable of installing sealant to the depths, widths and tolerances indicated. When malfunctions are noted, joint sealing shall not proceed until they are corrected.

1.6.2.1 Two-Component Cold-Applied Liquid Sealants

For two component cold applied machine mixed sealants the equipment shall be capable of delivering each component within an accuracy of 5 percent. Equip reservoirs for each component with mechanical agitation devices. Equip equipment with thermostatically controlled indirect heating of components when required. Equipment shall include screens over each reservoir to eliminate foreign particles or partially polymerized material which may clog lines. Equipment shall be capable of intimately mixing the two components through a range of application rates from 0.011 to 0.63 liter per second 10 to 60 gallons per hour and through a range of pressures from 345 to 1034 kPa 50 to 150 pounds per square inch. [Hand-mixing of cold-applied two component sealant may be done at the option of the Contractor for sealants conforming to FS SS-S-200, Type H].

1.6.2.2 Equipment for Silicone Sealant

Equipment for silicone sealant shall be air powered pump, components, and hoses as recommended by the sealant manufacturer. Hoses and seals shall be lined to prevent moisture penetration and withstand pumping pressures. Equipment shall be free of contamination from previously used or other type sealant.

1.7 SAFETY PROVISIONS

**
NOTE: Specify sandblasting of joint walls as a light cleaning method following sawing of joints. Sandblasting may cause some minor deterioration around the joint area. Secure station permission before sandblasting. If necessary, insert a cross-reference to Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
**

In accordance with the provisions of the contract respecting "Accident
Prevention," the Contractor shall take appropriate measures to control worker exposure to toxic substances during the work. Provide personnel protective equipment as required. Safety Data Sheets (Department of Labor Form OSHA-20 or comparable form) shall be available on the site. [Sandblasting operations shall conform to paragraph entitled "Abrasive Blasting" of Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.]

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Joint Sealant

**

NOTE: Select joint sealants based on service conditions of pavements. Joint sealants may be either two-component cold applied, single component cold applied (silicone), or hot-applied. Silicone sealants may be exclusively specified at the option of the design engineer when supported by lower life cycle costs.

Single Component Cold Applied Silicone: Silicone sealant may be used for general purpose sealing and re-sealing of joints in concrete pavements not subject to severe jet fuel or lubricant spillage. Silicone will swell up under fuel spills. This may result in an unsatisfactory seal in aircraft or vehicle servicing areas where spillage is frequent and severe. Laboratory test data has shown that silicone seals possess resistance to the heat and velocity of jet engines and they may be used as an alternative to FS SS-S-200 material in the end 305 m 1000 ft. of runways.

FS SS-S-200 - For sealing joints in portland-cement concrete pavements subjected to the spillage of lubricating oils, hydraulic fluids, jet fuel and to the heat and blast of jet aircraft engines including simulated aircraft carrier decks within standard runways.

FS SS-S-1401 - For sealing joints and cracks in pavements not subjected to the spillage of lubricating oils, hydraulic fluids, and fuels. This material may also be used to seal cracks in asphalt concrete pavements. It is not intended to be resistant to the heat and blast of jet aircraft engines except when the aircraft is moving at moderate speeds.

**

2.1.1.1 Two Component Cold-Applied Sealing Compound

**

NOTE: Either choose Type H (hand mixed, retarded cure) or M (machine mixed, fast curing), or indicate both and permit the Contractor to exercise the option depending on field conditions or scheduling

SECTION 32 01 19.61 Page 11
constraints. Restrict use of Type H to small projects or limited areas of large projects.

[FS SS-S-200, Type [H] [M].]

2.1.1.2 Sealant, Joint, Non-Jet Fuel Resistant, Hot Applied

[FS SS-S-1401, for portland cement and asphalt concrete pavements.]

2.1.1.3 Single Component Cold-Applied Silicone

Silicone sealant shall be self leveling, non-acid curing, and meet the following requirements:

<table>
<thead>
<tr>
<th>TEST</th>
<th>TEST METHOD</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Loss</td>
<td>ASTM C792 Modified (see note 1 below)</td>
<td>10 percent max.</td>
</tr>
<tr>
<td>Flow</td>
<td>ASTM C639 (Type I)</td>
<td>smooth and level</td>
</tr>
<tr>
<td>Extrusion Rate</td>
<td>ASTM C603</td>
<td>30 sec. max.</td>
</tr>
<tr>
<td>Tack Free Time</td>
<td>ASTM C679</td>
<td>5 hours max.</td>
</tr>
<tr>
<td>Hardness (Shore 00) (see note 2 below)</td>
<td>ASTM C661</td>
<td>30 – 80</td>
</tr>
<tr>
<td>Tensile Stress at 150 Percent Elongation (see note 2 below)</td>
<td>ASTM D412 (Die C)</td>
<td>207 kPa max. 30 psi max.</td>
</tr>
<tr>
<td>Percent Elongation (see note 2 below)</td>
<td>ASTM D412 (Die C)</td>
<td>700 min.</td>
</tr>
<tr>
<td>Accelerated Weathering</td>
<td>ASTM C793</td>
<td>pass 5000 hours</td>
</tr>
<tr>
<td>Bond and Movement Capability</td>
<td>ASTM C719</td>
<td>pass 10 cycles at plus 50 percent movement (no adhesion or cohesion failure)</td>
</tr>
<tr>
<td>Flame Resistance</td>
<td>FS SS-S-200</td>
<td>pass</td>
</tr>
</tbody>
</table>

Notes:
1. Percent weight loss of wet (uncured) sample after placing in forced-draft oven maintained at 70 degrees plus 2 degrees C 158 degrees plus 1 degrees F for two hours.

2. Specimen cured 21 days at 23 degrees C plus 2 degrees C 73 degrees plus 1 degree F and 50 percent plus 5 percent humidity.

ACCELERATED WEATHERING FACTORY TEST REPORT. For the Accelerated Weathering test, in lieu of testing of actual joint sealant to be used on the project, a report of a factory test, performed within two years of contract award, may be submitted.
2.1.2 Primers

Select concrete primer recommended by the manufacturer of the proposed liquid joint sealant.

2.1.3 Bond Breakers

2.1.3.1 Blocking Media

Compressible, nonshrinkable, nonreactive with joint sealant and nonabsorption type such as plastic backer rod, free of oils or bitumens. Blocking media shall be consistent with the joint seal manufacturer's installation instructions and be at least 25 percent larger in diameter than the width of the cleaned and re-faced joints as shown.

2.1.3.2 Separating Tape

Polyethylene or polyester tape, 0.075 mm 3 mil minimum thickness, or masking tape, nonreactive, nonabsorptive, adhesive-back tape, width equal to width of cleaned and refaced joints as indicated. Separating tape shall be consistent with the joint seal manufacturer's installation instructions.

PART 3 EXECUTION

3.1 JOINT PREPARATION

**

NOTE: Provide details of the existing joints and the required depth of removal of old sealant on the drawings.

**

Unless otherwise indicated, remove existing material, saw, clean and reseal joints. Do not proceed with final cleaning operations by more than one working day in advance of sealant. Thoroughly clean joints by removing existing joint sealing compound, bond-breakers, dirt, and other foreign material with the equipment specified herein, but not limited thereto. Cleaning procedures which damage joints or previously repaired patches by chipping or spalling will not be permitted. Remove existing sealant to the required depth as indicated. Precise shape and size of existing joints vary, and conditions of joint walls and edges vary and include but are not limited to rounding, square edges, sloping, chips, voids, depressions, and projections.

3.1.1 Removal of Existing Material

**

NOTE: Specify and show on the plans the depth to remove the old sealant from all types of joints. Show typical existing joint dimensions.

**

Remove from the joint the existing sealants by using the specified routing tool. After cutting free the existing sealant from both joint faces, remove sealant to the depth required to accommodate the bond breaking material and to maintain the specified depth for the new sealant. For expansion joints, remove existing sealant to a depth of not less than [the indicated depth.] 25 mm one inch. When existing preformed expansion-joint
material is more than 25 mm one inch below the surface of the pavement, remove existing sealant to the top of the preformed joint filler. For joints other than expansion joints, remove in-place sealant to the depth as indicated. At the completion of routing operations, clean pavement surface with vacuum sweeper and clean the joint opening by blowing with compressed air. Protect previously cleaned joints from being contaminated by subsequent cleaning operations.

3.1.2 Refacing of Joints

NOTE: Specify refacing of joints by sawing for the following reasons:

1. To widen the joint space or change the shape factor.

2. To straighten the vertical walls inside the joints and remove old sealant.

Reface concrete joint walls. [Re-saw joint grooves to the dimensions indicated.] Refacing shall be by power-driven concrete saw specified herein to remove residual sealant and a minimum of concrete. Removal shall provide exposure of newly clean concrete. Remove burrs and irregularities from sides of joint faces. Immediately after sawing each joint, thoroughly clean saw cut and adjacent concrete surface. Flush with water under pressure, simultaneously blowing water out with compressed air until debris is removed from the joint. Protect adjacent previously cleaned joint spaces from receiving water and debris during the cleaning operation.

[3.1.2.1 Joint Widening (Except Expansion Joints)]

NOTE: Edit this paragraph as required. New joint groove dimensions shall be shown on the plans.

The following information shall be shown on the project drawings:

1. Spacing, width, and type of joints in concrete pavements to be sealed.

2. Typical details of existing joints.

3. Depth of existing sealant to be removed for each type of joint, if not specified.

4. Detail of type of joint to be refaced or widened with a concrete saw. Show extent of new width and depth of sawing to provide the proper shape factor of the void space in the joint. For materials, other than silicone, the ratio of the depth to width (d/w) of the sealant reservoir should generally be not less than 1 nor greater than 1.5. For silicone sealant a depth to width ratio of approximately 0.5 is preferred. Depending upon the width of the refaced joint, the thickness of the sealant bead should be between 6 and 13 mm 1/4 and 1/2 inch.

SECTION 32 01 19.61 Page 14
Following are the recommended details for silicone sealants:

<table>
<thead>
<tr>
<th>Refaced Joint Width</th>
<th>10 mm</th>
<th>13 mm</th>
<th>19 mm</th>
<th>25 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recess Below Surface</td>
<td>6 mm</td>
<td>6 mm</td>
<td>6 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Thickness of Sealant</td>
<td>6 mm</td>
<td>6 mm</td>
<td>10 mm</td>
<td>13 mm</td>
</tr>
<tr>
<td>Backer Rod Diameter</td>
<td>13 mm</td>
<td>16 mm</td>
<td>22 mm</td>
<td>31 mm</td>
</tr>
<tr>
<td>Total Depth of Joint</td>
<td>25 mm</td>
<td>28 mm</td>
<td>38 mm</td>
<td>56 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refaced Joint Width</th>
<th>3/8"</th>
<th>1/2"</th>
<th>3/4"</th>
<th>1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recess Below Surface</td>
<td>1/4"</td>
<td>1/4"</td>
<td>1/4"</td>
<td>1/2"</td>
</tr>
<tr>
<td>Thickness of Sealant</td>
<td>1/4"</td>
<td>1/4"</td>
<td>3/8"</td>
<td>1/2"</td>
</tr>
<tr>
<td>Backer Rod Diameter</td>
<td>1/2"</td>
<td>5/8"</td>
<td>7/8"</td>
<td>1 1/4"</td>
</tr>
<tr>
<td>Total Depth of Joint</td>
<td>1"</td>
<td>1 1/8"</td>
<td>1 1/2"</td>
<td>2 1/4"</td>
</tr>
</tbody>
</table>

5. Location and type of bond breaker or back-up.

6. Identify type of sealant based on proposed use of pavements. (See note in paragraph entitled "Joint Sealant.")

7. For joint details see UFC 3-260-02, "Pavement Design for Airfields".

Saw joints having grooves less than 10 mm 3/8 inch wide and less than 25 mm one inch deep to a minimum width of [10] [13] [_____] mm [3/8] [1/2] [_____] inch and to the minimum depth, [of] [25 mm] [38 mm] [one inch] [1 1/2 inches] [as indicated].

3.1.3 Final Cleaning of Joints

3.1.3.1 Sandblasting Cleaning

NOTE: Specify sandblasting of joint walls following sawing of joints. Sandblasting may cause some minor deterioration around the joint area. Secure station permission before sandblasting. If necessary, insert a cross-reference to Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.

Following removal of existing sealant, and sawing, and immediately before resealing, thoroughly clean newly exposed concrete joint faces and pavement surface extending up to 50 mm 2 inches from each joint edge by sandblasting until concrete surfaces in the joint space are free of sealants, dust, dirt, water and other foreign materials which would prevent bonding of new
3.2.2 Reject materials which contain water, hard caking of separated constituents, nonreversible jell, or other unsatisfactory conditions such as settlement of constituents into a soft mass that cannot be readily and uniformly remixed in the field with simple tools. In conformance with the

SECTION 32 01 19.61 Page 16
manufacturer's recommendations, mix individual components in separate shipping containers before transferring components to appropriate reservoirs of application equipment. Thoroughly mix components to ensure homogeneity of components and incorporation of constituents at time of transfer. When necessary, for remixing prior to transfer, warm components to a temperature not exceeding 32 degrees C 90 degrees F by placing components in heated storage or by other approved methods. In no case shall components be heated by direct flame or in single-walled, non-oil-bath heating kettles. [Hand mixing of cold-applied two component sealant may be done at the option of the Contractor for sealants conforming to FS SS-S-200, Type H.]

3.3 INSTALLATION OF SEALANT

3.3.1 Test Section

**
NOTE: Specify factory representative for projects with more than approximately 3,000 m 10,000 linear feet of re-sealing.
**

Install a test section of 60 m 200 linear feet at the start of the sealing operation for each type sealant to be used. [A representative of the joint seal manufacturer shall be on site full time during the installation of the test section.] Test section shall meet contract requirements. The Contracting Officer shall be notified upon completion of the test section.

3.3.2 Time of Application

After approval of the test section, seal joints immediately following final cleaning and placing of bond breakers. Commence sealing joints when walls are dust free and dry, and when weather conditions meet joint seal manufacturer's instructions. If the above conditions cannot be met, or when rains interrupts sealing operations, reclean and permit the joints to dry prior to installing the sealant.

3.3.3 Sealing the Joints

**
NOTE: Specify 5 hours tack free time for silicone.
**

Do not install joint sealant until joints to be sealed have been inspected and approved. Install bond breaker just prior to pouring sealant. Fill the joints with sealant from bottom up until joints are uniformly filled solid from bottom to top using the specified equipment for the type of sealant required. Fill joints to 6 mm 1/4 inch below top of pavement within tolerances as indicated, and without formation of voids or entrapped air. Except as otherwise permitted, tool the sealant immediately after application to provide firm contact with the joint walls and to form the indicated sealant profile below the pavement surface. Remove excess sealant that has been inadvertently spilled on the pavement surface. [When two-component sealants are placed, each day check hourly the proportioning capability of the equipment to determine that the preset volume output for each component is being maintained. The material used for these checks may be returned to the proper component reservoir. In no case shall two component sealants be installed using gravity methods and pouring spouts, except for approved hand mixing methods. When a primer is supplied or
recommended by the manufacturer of a two component sealant, apply the
primer evenly to the joint faces in accordance with the manufacturer's
recommendations.] Check sealed joints frequently to assure that newly
installed sealant is cured to a tack-free condition within [3 hours] [5
hours]. Protect new sealant from rain during curing period.

3.4 FIELD QUALITY CONTROL

3.4.1 Sampling Joint Seal

Obtain a one gallon sample of each type of joint seal on the project from
material used for each 3,000 m 10,000 linear feet or less of joints
sealed. Store samples according to joint seal manufacturer's
instructions. Retain samples until final acceptance of the work by the
Contracting Officer.

3.4.2 Joints

Inspect and approve joints which have been cleaned and have backer rods or
bond breaking tape installed prior to sealing.

3.4.3 Joint Seal Test Section

Inspect joint seal test section [with the joint seal manufacturer's
representative]. [The joint seal manufacturer's representative shall
provide written notice of deficiencies and required corrections or
adjustments in joint seal installation procedures.] Correct deficiencies
and obtain approval of test section [by the Contracting Officer] prior to
installing joint seals.

3.4.4 Joint Sealer

Inspect installed joint seals for conformance to contract requirements,
joint seal manufacturer's instructions, and the test section. Obtain
approval for each joint seal installation.

3.5 ACCEPTANCE

Reject joint sealer that fails to cure properly, or fails to bond to joint
walls, or reverts to the uncured state, or fails in cohesion, or shows
excessive air voids, blisters, surface defects, swelling, or other
deficiencies, or is not properly recessed within indicated tolerances.
Remove rejected sealer and reclean and reseal joints in accordance with the
specification. Perform removal and reseal work promptly by and at the
expense of the Contractor.

-- End of Section --