USACE Corps of Engineers Virtual Design Modeling Autodesk Civil 3D Template

David Johnson. POC

RA, NCARB

ERDC-ITL – CAD/BIM Technology Center

April 2018

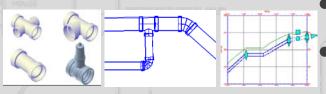
David Johnson, ERDC, CAD/BIM Technology Center

Eugene Hubbell - USACE POA

Patrick O'Connor, Charles Byerley, Kyle Smallegan – USACE SAM

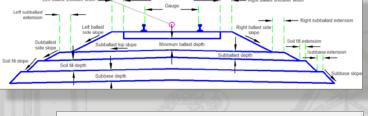
Daniel Nelson - USACE NAP

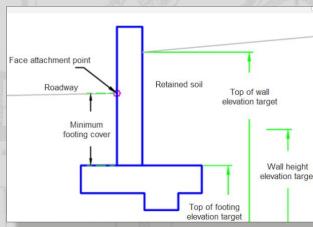
Leo Lavayen - Advanced Solutions, Inc.

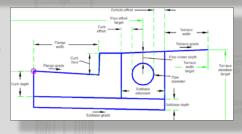


CIM - CIVIL INFORMATION MODELING

Real Objects:

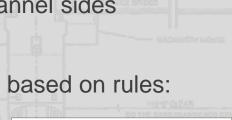

- Levees
- Channels
- Floodwalls
- Roads
- Pipes




With the process of advanced Modeling, you are modeling with Objects that behave like real world objects

CIM Objects:

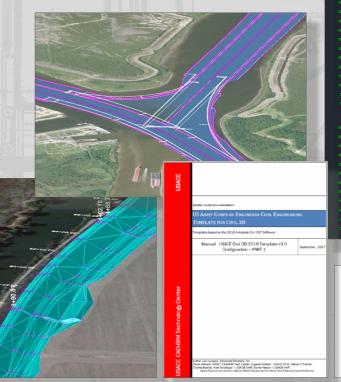
- Levees
- Channels
- Floodwalls
- Berms
- Retaining Wall
- Roads
 - Railroads
 - Pressure Piping

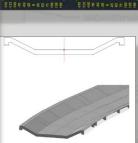

CIM: THE POWER OF SYSTEMS

The power of Advanced Modeling CIM is its ability to use the Objects in "Systems"

- Channel System
 - The Alignment path of the channel
 - The Profile
 - Existing
 - what the channel vertical elevation is currently
 - Follows existing 3D surface elevations
 - Relationship to the existing ground surfaces
 - Designed
 - what the channel vertical elevation (depth) needs to be
 - The Section/Assembly
 - the required depth and min/max slopes of the channel sides
 - The Corridor
 - Assign Section of channel to follow Alignment
 - Allow channel object to connect to existing grade based on rules:
 - Min/max slopes, distances

CIVILIZING BIM- USACE CIVIL 3D TEMPLATE


-thanks to Steve Hutsell


USACE Template with Styles set for object modeling and national standards compliance.

Includes:

- .DWT Template
- Support files
 - .LIN Linestyles
 - Pipes Catalog
 - .STB & .CTB
 - .SHX SHAPE files
 - Survey File sample

Manuals

VIRTUAL MODELING TEMPLATE FOR CIVIL

Civil Object Configurations:

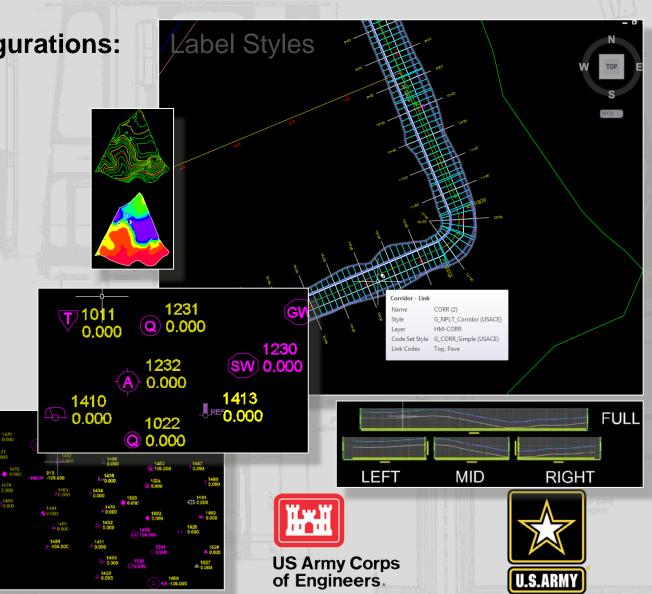
Alignment Styles

Profile Styles

Section Styles

Surface Styles

Sample Lines

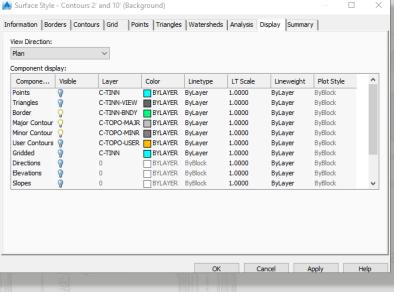

Corridor Styles

Point Styles

Survey

Pipe Styles

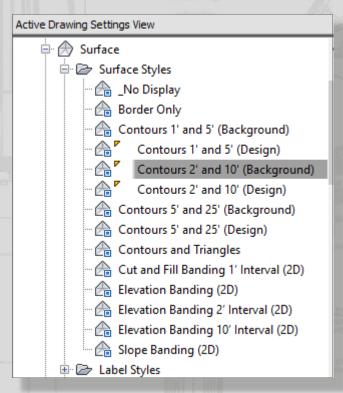
Piping Networks



CIVIL 3D STYLES - the Heart of C3D

Civil 3D is controlled by Styles Settings

- Sets display information
- Controls layers

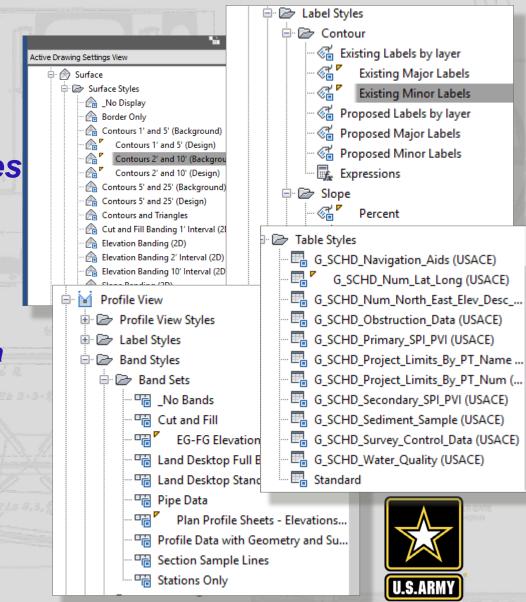


2

CIVIL 3D STYLES - the Heart of C3D

Object Style Settings

- Each Object has style settings set up:
 - Point Styles
 - Surface Styles
 - Point Cloud Styles
 - Alignment Styles
 - Profile Styles
 - Section Styles
 - Corridor Styles



CIVIL 3D STYLES - the Heart of C3D

Styles Settings

- Different style Types:
 - Surface Styles
 - Profile View Styles
 - Label Styles
 - Contour
 - Slope
 - Navigation Aids
 - Obstruction Data
 - Project Limits
 - Band Styles
 - Table Styles

USACE CIVIL 3D SETTINGS

Annotation Settings

- Default Civil 3D Annotation:
 - Set as Arial Style
 - Arial font
 - Non-annotative

- Note: Civil 3D will adjust non-annotative text based on the view scale
- Height = 0'-0"
- This keeps standard requirements as well as makes a simple check of making sure *Arial* style is *Arial* font
- Tables, Labels, Point styles
 - 'Arial' Style
- Line Styles

USACE CIVIL 3D SETTINGS

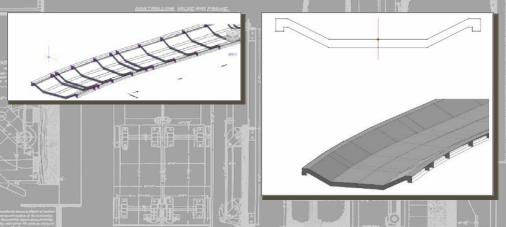
Dimension Settings

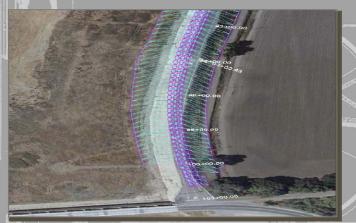
- Civil 3D Dimension Styles:
 - AEC_Civil_Arrow
 - Arrow closed /filled marker
 - Text height: 0.1"
 - Precision 0.00 (hundredths)
 - Primary units Decimal
 - AEC_Civil_Slash
 - Architectural tick slash marker
 - Text height: 0.1"
 - Precision 0.00 (hundredths)
 - Primary units Decimal

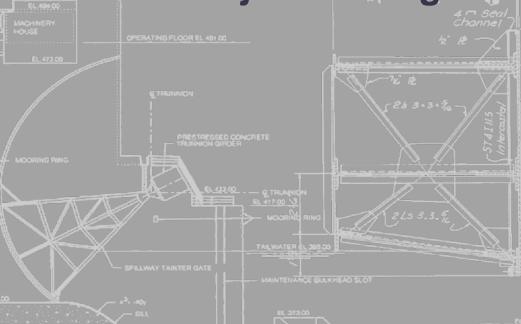
0

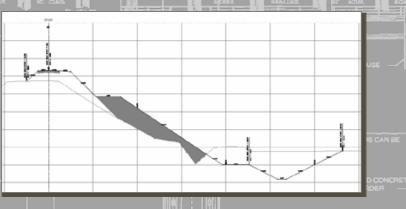
ABBREVIATIONS

Shortcut Abbreviations set:

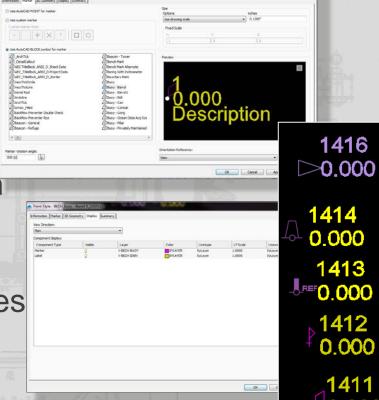

☐ Alignment Geometry Point Text	
Station Equation Increasing	Increasing
Curve Mid Point	Mid
Reverse Curve-Curve Intersect	PRC
Spiral-Tangent Intersect	ST
Alignment End	EP
Tangent-Curve Intersect	PC
Compound Curve-Curve Intersect	PCC
Alignment Beginning	BP
Curve-Spiral Intersect	CS
Tangent-Tangent Intersect	PI
Spiral-Spiral Intersect	SS
Reverse Spiral Intersect	SPI
Curve-Tangent Intersect	PT
Spiral-Curve Intersect	SC
Station Equation Decreasing	Decreasing
Tangent-Spiral Intersect	TS


3	Profile	
	Profile Start	BVP
	Profile End	EVP
	Point Of Vertical Intersection	PVI
	Grade Break	BREAK
	Vertical Tangent-Curve Intersect	BVC
	Vertical Tangent-Curve Intersect Station	BVCS
	Vertical Tangent-Curve Intersect Elevation	BVCE
	Vertical Curve-Tangent Intersect	EVC
	Vertical Curve-Tangent Intersect Station	EVCS
	Vertical Curve-Tangent Intersect Elevation	EVCE
	Vertical Compound Curve Intersect	VCC
	Vertical Compound Curve Intersect Station	VCCS
	Vertical Compound Curve Intersect Elevation	VCCE
	Vertical Reverse Curve Intersect	VRC
	Vertical Reverse Curve Intersect Station	VRCS
	Vertical Reverse Curve Intersect Elevation	VRCE
	High Point	HP
	Low Point	LP
	Curve Coefficient	K
	Grade Change	Α
	Overall High Point	Overall HP
	Overall Low Point	Overall LP




CIVIL 3D VIRTUAL OBJECTS

Civil 3D Object Settings



Included Point Styles

- Point Marker assigned
- Layer settings assigned
- Symbols are scaled with the view scale-
 - Change view scale
 - Marker size changes
 - Marker text scales correctly
- Can be assigned to imported survey point key
 - Automatic linking

1410

0.000

1415

1231 Q 0.000

<u>1230</u>

1232

0.000

USACE CIVIL 3D TABLES

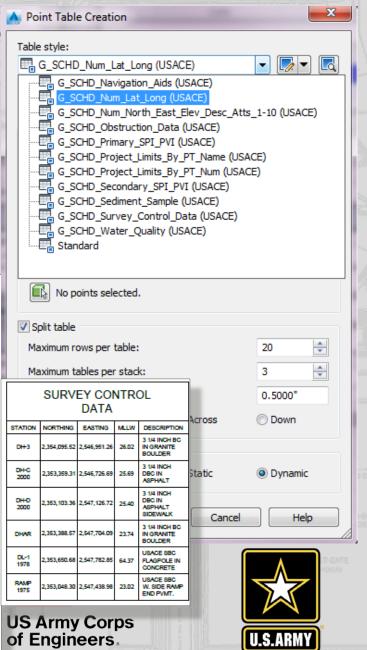
Consistent Settings

'Tables' format is set:

G_SCHD_Slope_Arrow_Table (USACE)

G_SCHD_User_Defined_Contour_Table (USACE)

G_SCHD_Watershead_Table (USACE)


G_SCHD_Direction_Table (USACE)

G_SCHD_Elevation_Table (USACE)

G_SCHD_Contour_Table (USACE)

G_SCHD_Slope_Table (USACE)

SECONDARY SPI/PVI			
NAME	NORTHING	EASTING	
GC-08	2,354,324.08	2,549,301.13	
GC-10	2,354,187.72	2,549,441.23	
GC-12	2,354,051.31	2,549,587.49	
GC-14	2,353,914.90	2,549,733.76	
GC-25	2,354,338.90	2,549,718.98	
GC-27	2,354,192.59	2,549,588.73	
GC-28	2,354,046.38	2,549,446.16	
GC-30	2,353,900.12	2,549,309.75	
GC-55	2,354,616.65	2,549,567.79	
GC-56	2,354,475.31	2,549,572.72	
GC-57	2,354,333.98	2,549,577.64	
GC-58	2,354,275.62	2,549,933.45	
GC-59	2,354,606.80	2,549,285.12	
GC-60	2,354,465.41	2,549,296.21	
GC-61	2,353,987.98	2,549,808.12	
GO-62	2,354,319.20	2,549,153.64	
GC-63	2,354,314.28	2,549,012.30	
GO-64	2,354,041.46	2,549,304.82	
GC-65	2,354,036.53	2,549,163.49	
GC-66	2,354,031.61	2,549,022.15	
GC-67	2,353,841.77	2,549,665.55	
GC-68	2,353,690.58	2,549,387.80	

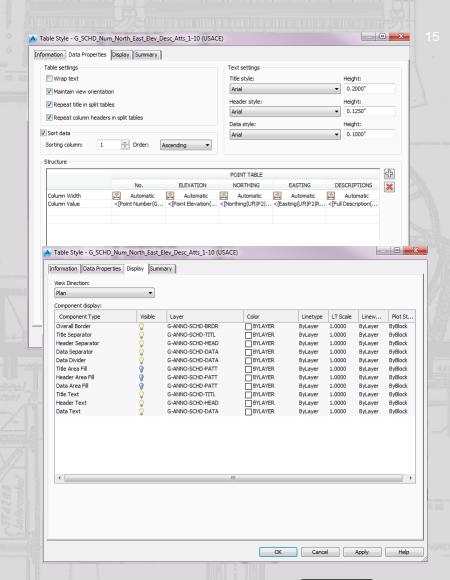
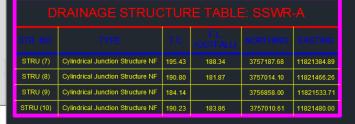


TABLE SETTINGS

Table Objects:

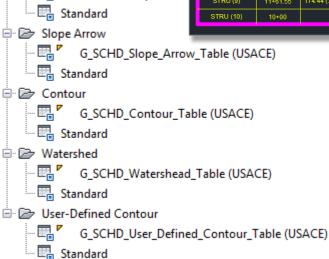
- Read information from model
- Extract data and format the data based on table settings
- Layers assigned to separate components
- Data settings can be changed for specific table requirements


USACE CIVIL 3D TABLES

Tables are Objects

G_SCHD_Direction_T

G_SCHD_Slope_Table


☐ ☐ Table Styles
☐ ☐ ☐ Direction

DRAINAGE PIPE TABLE: SSWR-A						
PIPE NO.	TYPE	LENGTH (FT.)	F.L. U.S.	F.L. D.S.	SLOPE (FT/FT)	DESIGN FLOW (C.F.S.)
PIPE (6)	12" DIP	191.70'	188.34	183.14	2.72%	0.000
PIPE (7)	30" PVC	170.05'	181.87	174.44	4.37%	0.000
PIPE (8)	4" DIP	14.17'	183.86	183.79	0.48%	0.000

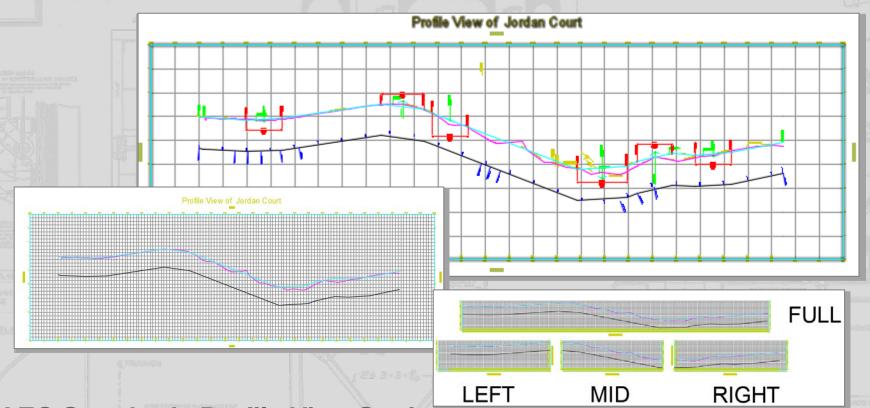
STRUCTURE TABLE: SSWR-A				
STRUCTURE	STATION	INV. IN	TOP	INV. OUT
STRU (7)	8+00		195.43	188.34 (12" DIP)
STRU (8)	9+91.51	183.14 (12" DIP) 183.79 (4" DIP)	190.80	181.87 (30" PVC)
STRU (9)	11+61.55	174.44 (30" PVC)	184.14	
STRU (10)	10+00		190.23	183.86 (4" DIP)

Р	PIPE TABLE: SSWR-A			
PIPE	SIZE	MATERIAL	LENGTH	SLOPE
PIPE (6)	12"	DIP	191.70'	2.72%
PIPE (7)	30"	PVC	170.05'	4.37%
PIPE (8)	4"	DIP	14.17'	0.48%

ALIGNMENTS

Alignment Objects

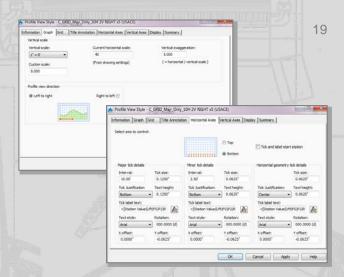
- Various types of objects
 - Roads
 - Pipe networks
 - Channels
 - Levees
- Alignment Components
 - Offset
 - Curb return
- Label styles for alignments
- Table Styles

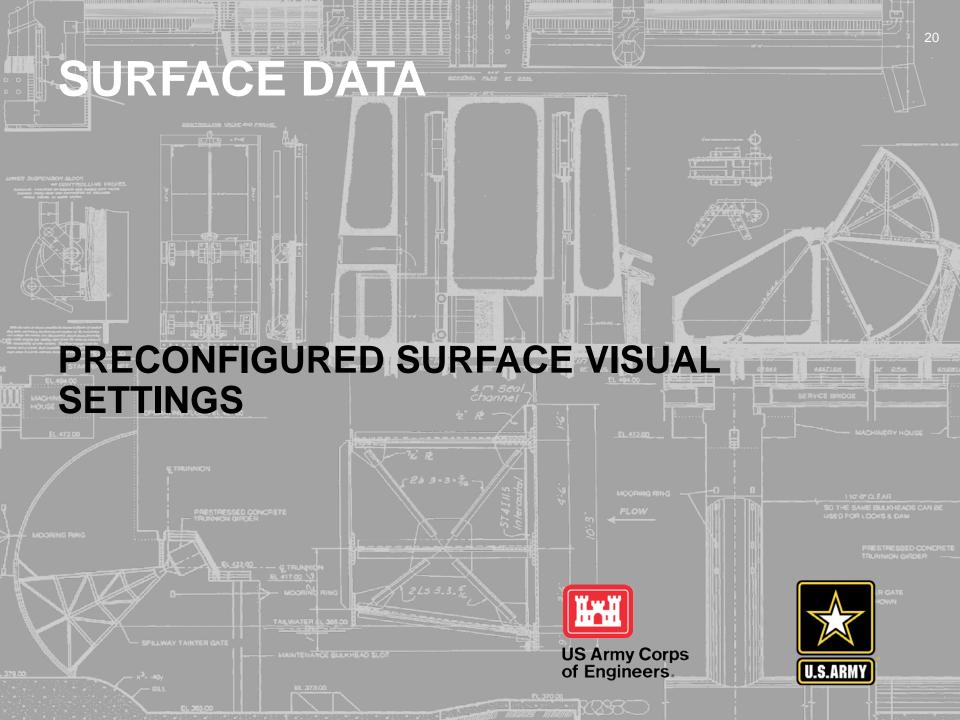

- Alignment Label Styles
 - Stations Minor, Major
 - Station Offset
 - Line, Curve, Spiral
 - Tangent Intersection

PROFILES

AEC Standards Profile View Settings

- Layer and label settings are built in
- Assign style

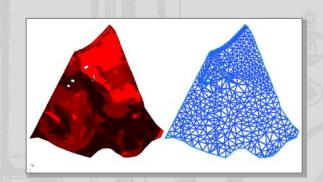


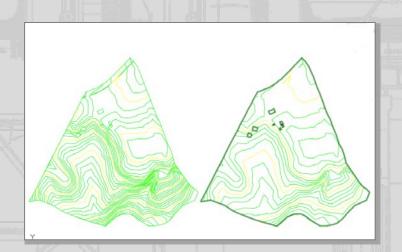

PROFILES

AEC Standards Profile View Settings

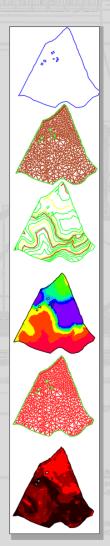
- Profile Styles can be assigned to a profile
- Copy and Modify for different uses if needed
- Graph, Grid, Title Annotation, Horizontal & Vertical Axes, Display

PROFILE	DESCRIPTION
C_GIRD_Projection (USACE)	Object Display - As Drawn
C_GRID_STA_Ex_Only_Majr_Minr (USACE)	Station & Ex ONLY @ Major & Minor Grids 0.5" height box
	Rememeber to set Profile 1 in Profile View Properties **Ex text is
	Hard Coded Italic**
C_GRID_STA_Ex_Only_Majr_ONLY (USACE)	Station & Ex ONLY @ Major Grids ONLY 0.5" height box
	Rememeber to set Profile 1 in Profile View Properties **Ex text is
	Hard Coded Italic**
C_GRID_STA_FG_Offset_Majr_Minr (USACE)	EXTRA "FG" 3rd ROW - Profile 2 @ Major & Minor Grids 0.5" height
	box - set to NO PLOT **Band Offest will Have to be shifted5
	Offset **
C_GRID_STA_FG_Offset_Majr_ONLY (USACE)	EXTRA "FG" 3rd ROW - Profile 2 @ Major ONLY Grids 0.5" height box
	- set to NO PLOT **Band Offest will Have to be shifted5 Offset **
C_GRID_STA_Only_Majr_Only (USACE)	Station ONLY @ Major Grids ONLY 0.5" height box **For Use when
	NO Bands are Necessary**

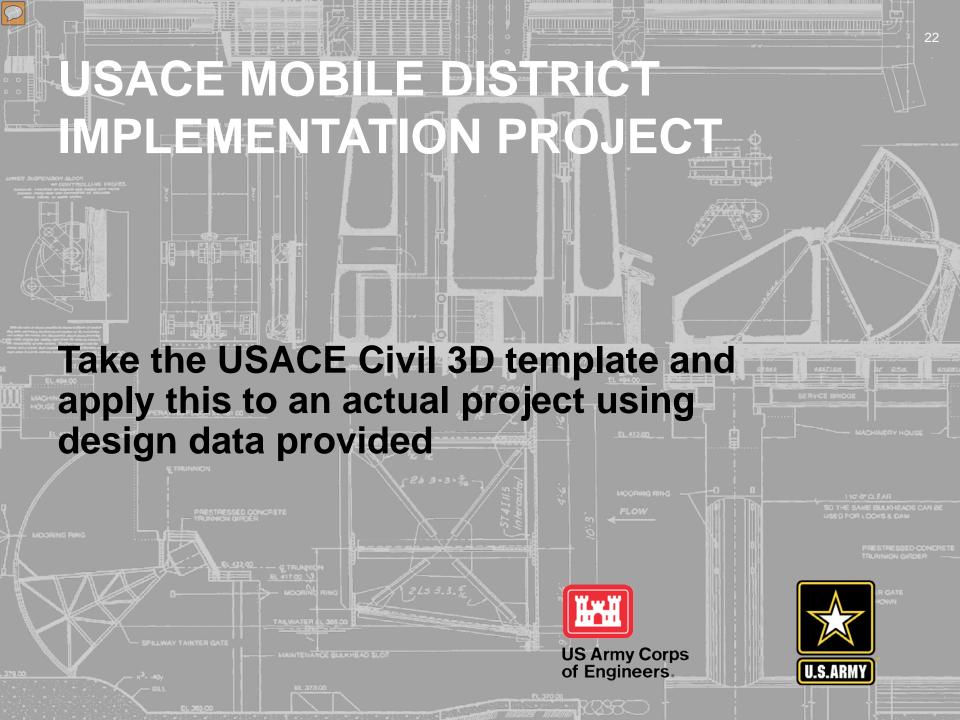


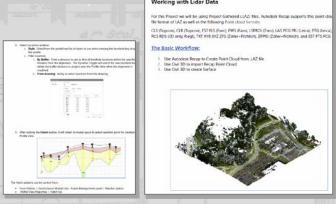

SURFACE STYLES

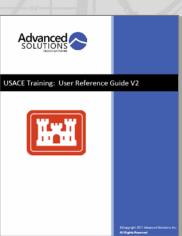
Create surface from survey, point cloud


Assign visual appearance

- Contours
- Analysis Slopes
- Analysis Elevation
- Hydrography
- Watershed
- TIN Blue lines
- 3D Styles






DEMONSTRATION OF THE DESIGN PROCESS

- Objectives:
 - Use the USACE Civil 3D Template
 - Use an existing design project as a base
 - Demonstrate the Workflow recommended to produce a design and construction

documents

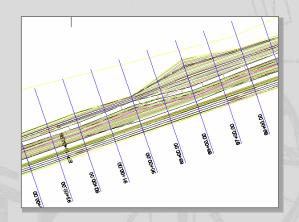
- Project set-up
- Shortcuts
- Best practices

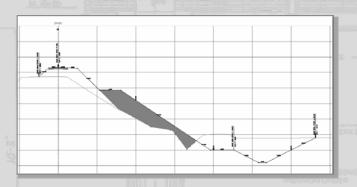
2

THE DEMO OF THE DESIGN PROCESS

- Work processes demonstrated:
 - Basic project set-up processes
 - Shortcuts
 - Survey
 - Geotechnical
 - GIS data incorporation
- Data used:
 - XML Surface data (from XML text file)
 - LIDAR surface data
 - GIS Shape files
 - CAD Data

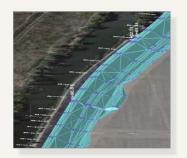
THE CIM OBJECTS


- CIM Civil Objects demonstrated:
 - ALIGNMENTS
 - PROFILES
 - CORRIDORS
- Civil processes demonstrated:
 - Create Surfaces
 - Existing
 - Proposed
 - Grading
 - Geotechnical
 - Building Pad
 - Sidewalks



BIM PROCESSES

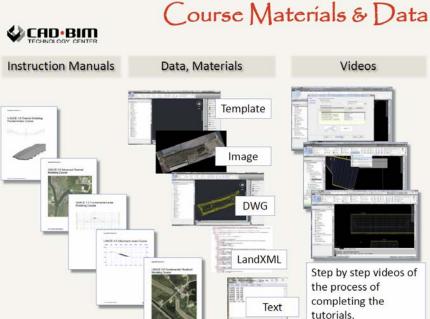
- SURVEY Data:
 - Import data
 - Apply Point styles
- Create Alignments
- Create Profiles
 - Existing grades
 - Proposed grades
- Create Corridors
- Create Sections
 - Existing
 - Proposed

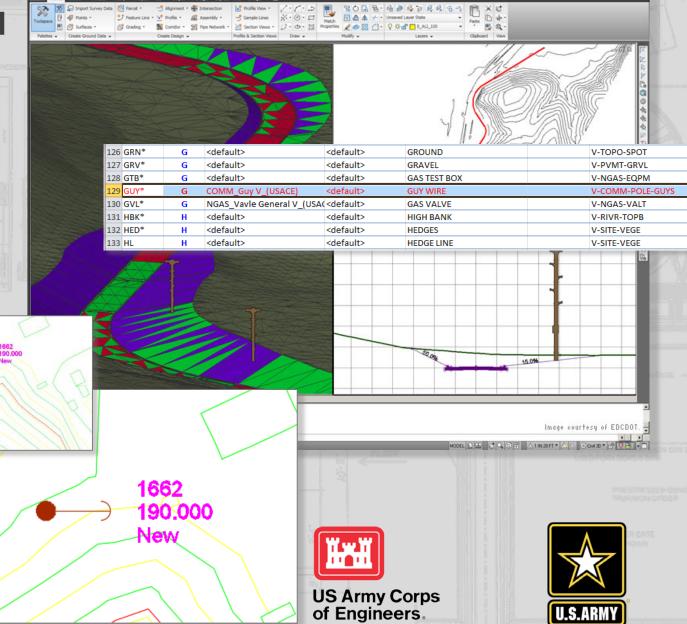

CIVIL 3D TRAINING SITE: USACE

Online CAC training for USACE:

AutoCAD Civil 3D

AUTODESK





SURVEY AUTOMATION

From Site

- to Surveyor
- to Survey
- to DESIGN
- To CAD

?? GOT QUESTIONS ??

david m. johnson

USACE CAD/BIM Technology Center
david.m.johnson2@usace.army.mil

USACE Advanced Modeling - Civil 3D Team

